Background/Aims: High fat meals have been previously shown to promote bioavailability of n-3 polyunsaturated fatty acids (n-3PUFA). While the effect of dietary fat types on incorporation of n-3PUFA into blood and tissue lipids has been widely discussed in the literature, to-date this phenomenon has not been reported in humans. 

Methods: This was a randomised, controlled, parallel, dietary intervention trial involving 25 healthy adults aged 18 to 65 years. Subjects consumed foods rich in either saturated (SFA) or n-6 polyunsaturated fatty acids (n-6PUFA), all supplemented with 2.4 g n-3PUFA daily for 6 weeks. Blood samples were collected after an overnight fast, at baseline and post-intervention, for analysis of plasma and red blood cell fatty acids.

Results: Linoleic acid increased significantly in plasma but not erythrocytes following the n-6PUFA diet, and did not change after the SFA diet. There was an increase in eicosapentaenoic acid (EPA) which was significantly higher (2 fold) after the SFA compared to the n-6PUFA diet. There was also a greater increase in docosahexaenoic acid (DHA) after the SFA diet, although this was not significantly different to the n-6PUFA diet. Conversely there was a significant reduction in plasma docosapentaenoic acid (DPA) which was 2 fold greater following the n-6PUFA diet compared to the SFA diet.

Conclusions: Dietary background fat type affects n-3PUFA incorporation into plasma and erythrocytes in healthy subjects. Dietary SFA facilitates n-3PUFA incorporation into plasma and erythrocytes compared to dietary n-6PUFA.

Funding source(s): Hunter Medical Research Institute (HMRI) and Coordenação Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

THE EFFECT OF LONG CHAIN OMEGA-3 PUFA ON RESTING AND RECOVERY HEART RATE IN HEALTHY ADULTS

B. Isp, E. Neale, G. Peoples, L. Tapsell. University of Wollongong, NSW, Australia

E-mail address: bfi883@uowmail.edu.au (B. Isp)

Background/Aims: An elevated heart rate at rest and slower recovery following exercise are indicators of cardiovascular disease (CVD) mortality and death. Research suggests consumption of long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) have an anti-arrhythmic effect on the heart and reduce heart rate in those with cardiovascular dysfunction. This systematic literature review aimed to investigate the current evidence regarding the effects of LCn-3PUFA on resting and recovery heart rate in adults free from CVD.

Methods: A systematic search of the databases Scopus, Web of Science and the Cochrane Library was conducted (January 2005 to May 2015). Inclusion criteria were: randomised controlled trials investigating the effect of LCn-3PUFA consumption on resting and/or recovery heart rate in healthy adults without pre-existing CVD. Studies were assessed for quality using the American Dietetic Association Quality Criteria Checklist.

Results: Of the eight articles identified in this review, only two showed a heart rate lowering effect of LCn-3PUFA consumption. These two studies involved participants with elevated resting heart rates or risk factors for CVD. Recovery heart rate was assessed in only one study, which found a reduction following LCn-3PUFA consumption.

Conclusions: Whilst a lack of an effect of LCn-3PUFA on resting heart rate was found in most studies, supplementation with LCn-3PUFA appeared to be effective in individuals with elevated resting heart rates. Further studies are needed to determine these effects on heart rate recovery in healthy adults.

Funding source(s): N/A.

N-6 POLYUNSATURATED FATTY ACID INTAKE AND RISK OF MORTALITY IN THE AUDIAB DiABEteS COHORT

A.J. Owen 1, D.J. Magliano 1,2, K. O’Dea 3, E.L.M. Barr 2, J. Shaw 2, 1Monash University, VIC, Australia; 2Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia; 3Sunsom Institute for Health Research, Adelaide, SA, Australia

E-mail address: alice.owen@monash.edu (A.J. Owen)

Background/Aims: Analysis of the Sydney Heart Study reported an adverse effect of dietary n-6 polyunsaturated fatty acids (n-6PUFA) on mortality, and recent meta-analyses have reached contrasting conclusions regarding the effect of dietary n-6 polyunsaturated fatty acids (PUFA) on cardiovascular mortality. The aim of this study was to examine the effect of n-6PUFA on mortality in the Australian Diabetes, Obesity and Lifestyle Study (AUSDiab) cohort, a large Australian prospective study of cardiometabolic health.

Methods: The relationship between dietary PUFA intake and all-cause or CVD mortality in the AUSDiab cohort, a population of 11,247 Australians aged ≥25 years recruited in 1999/2000 and followed until 2012, was examined using Cox regression. Comorbidities, demographic, and lifestyle information was collected by questionnaire, and fasting blood tests undertaken. Baseline dietary intake was assessed by a 121-item food frequency questionnaire. Vital status and causes of death were collected by linkage to death registries.

Results: Adjusted for age and sex, those in the highest quintile of n-6PUFA intake had lower risk of total and cardiovascular mortality (all-cause mortality HR: 0.82, 95% CI: 0.69-0.99, p <0.05), but this failed to retain significance after further adjustment for previous cardiovascular disease, education, exercise, diabetes, dietary energy and smoking.

Conclusions: These findings from a contemporary Australian cohort suggest that n-6PUFA have neutral or possibly beneficial effects on all-cause and cardiovascular mortality.

Funding source(s): None to declare for these analyses. However AUSDiab has been funded by NHMRC, as well as support from State governments, academic and industry bodies.

CONCURRENT SESSION 3: CARBOHYDRATES. THE EFFECT OF IMPROVING DIETARY QUALITY ON MEASURES OF VASCULAR STRUCTURE AND FUNCTION IN A POPULATION WITH DIABETES

K.S. Petersen, J.B. Keogh, N. Blanch, P.M. Clifton. School of Pharmacy and Medical Sciences, University of South Australia, SA, Australia

E-mail address: kristina.petersen@myemail.unisa.edu.au (K.S. Petersen)

Background/Aims: People with diabetes have a heightened risk of cardiovascular disease compared with the general population. The aim was to determine if increasing fruit (+1 serving), vegetable (+2 servings) and dairy (+1 serving) intake slows 12 month common carotid artery intima media thickness (CCA-IMT) progression, compared to a control group continuing on their usual diet, in people with type 1 and type 2 diabetes. Secondary outcome measures were peripheral and central blood pressure, augmentation index (AI) and pulse wave velocity (PWV).

Methods: A month randomised controlled trial was conducted. The primary outcome was mean CCA-IMT, measured at baseline and 12 months using 8 mode ultrasound. Secondary outcomes were peripheral and central blood pressure, AI and PWV, measured at baseline, 3, 6, 9 and 12 months. Participants in the intervention group received dietary