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Abstract: Generalized autoregressive conditional heteroskedastic (GARCH) model is 
a standard approach to study the volatility behaviour of financial time series. The 
original specification of GARCH model is developed based on Normal distribution for 
the disturbances, which cannot accommodate fat-tailed properties commonly 
existing in financial time series. Consequently, the resulting estimates are not 
efficient. Traditionally, the Student’s t-distribution and General Error Distribution 
(GED) are used alternatively to solve this problem. However, a recent study points 
out that those alternative distributions lack stability under aggregation. This leaves 
the appropriate choice of the distribution of disturbances in the GARCH model still 
an open question. In this paper, we present the theoretical features and desirability 
of the tempered stable distribution. Further, we conduct a series of simulation 
studies to demonstrate that the GARCH model with this distribution consistently 
outperforms those with the Normal, Student-t and GED distributions. This result is 
robust with empirical evidence of the S&P 500 daily return. Therefore, we argue that 
the tempered stable distribution could be a widely useful tool for modelling the 
financial volatility in general contexts with a GARCH-type specification.
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1. Introduction
Over the past few decades, the autoregressive conditional heteroskedastic (ARCH) model has be-
come a standard approach to study the volatility of financial time series. This framework is firstly 
proposed by Engle (1982) and is further extended to be the generalized ARCH (GARCH) model 
(Bollerslev, 1986). The popularity of GARCH model is particularly due to its ability to capture charac-
teristics of financial time series like time varying heteroskedasticity and volatility clustering (Ho, Shi, 
& Zhang, 2013).

Originally, GARCH model is constructed based on the assumption that financial time series follows 
a Normal (Gaussian) distribution. However, significant evidence suggests that the financial time se-
ries is rarely Gaussian but typically leptokurtic and exhibits heavy-tail behaviour (Bollerslev, 1987; 
Podobnika, Horvaticd, Petersena, & Stanleya, 2009; Stanley, Plerou, & Gabaix, 2008; Susmel & Engle, 
1994). Theoretically, GARCH model can accommodate for fat-tailedness through its specification 
(Bollerslev & Wooldridge, 1992). In practice, however, there is still excess kurtosis left in the stand-
ardized residuals in most cases (Calzolari, Halbleib, & Parrini, 2014). To solve this problem, a common 
solution is to employ a fat-tailed distribution such as the Student’s t-distribution or General Error 
Distribution (GED) (Chkili, Aloui, & Nguyen, 2012; Fan, Zhang, Tsai, & Wei, 2008; Mabrouk & Saadi, 
2012; Zhu & Galbraith, 2011). Compared to the GARCH model with Normal distribution, estimates of 
which are believed to be consistent even when the true distribution is fat-tailed (Bollerslev & 
Wooldridge, 1992), GARCH model with the true distribution can lead to more efficient results 
(Bollerslev, 1987).

Motivated by those studies, GARCH model with a fat-tailed distribution should always be em-
ployed in the practical finance research. This is particularly important in accurately forecasting fi-
nancial volatility, which is critical to portfolio risk management such as measuring risks with 
Value-at-Risk and/or Conditional-Tail-Expectation. However, a recent study of Calzolari et al. (2014) 
argues that the widely used Student’s t-distribution and GED are problematic. Their most outstand-
ing drawback is that those distributions lack in stability under aggregation, which is of particular 
importance in portfolio applications and risk management. This leaves the following question still 
open for academics and practitioners: which fat-tailed distribution should we employ when the true 
distribution is unknown? We aim to address this with simulation and empirical evidence in the sub-
sequent sections.

As a replacement of the Student’s t and GED, the �-stable distribution is recommended by Calzolari 
et al. (2014), which has the stability-under-aggregation feature. Additionally, they argue that similar 
to the Student’s t and GED, �-stable distribution can be easily adapted to account for many proper-
ties of volatility such as asymmetry in the underlying financial time series. Unfortunately, since the 
second moment of �-stable distribution does not exist in most cases, GARCH model with this distri-
bution will lead to problematic interpretation. Hence, the sought of an alternative distribution would 
be of particular interest for the application of GARCH model.

The tempered stable distribution is a natural substitution of the �-stable (Feng & Shi, 2016; Shi & 
Feng, 2015). Firstly introduced1 in Koponen (1995), tempered stable distribution covers several well-
known subclasses like Variance Gamma distributions, bilateral Gamma distributions and CGMY dis-
tributions (Küchler & Tappe, 2013). The advantage of this distribution is that it retains most of the 
attractive properties of the �-stable distribution and has a defined second moment.

In this paper, we employ the tempered stable distribution for the GARCH model and argue that it 
outperforms both the Gaussian and commonly used fat-tailed distributions (Student’s t and GED). To 
demonstrate that, we conduct a series of simulation studies to compare the performance of GARCH 
model with different distributions. First, we set the true distribution as Student’s t and GED, respec-
tively. Via nine combinations of different GARCH parameters and sample size, GARCH models with 
Gaussian and three distinct fat-tailed distributions are systematically analysed. It is demonstrated 
that when the true distribution is Student’s t or GED, GARCH model with tempered stable distribution 
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generates very similar results to that with true distribution. More importantly, it outperforms all the 
other competitors in terms of consistency, efficiency and overall performance. Second, we let the 
tempered stable be the true distribution. Nine sets of simulations are further constructed, including 
different choices of GARCH and tempered stable distribution parameters. In this scenario, none of 
the GARCH models with Gaussian, Student’s t or GED distributions performs as well as that with the 
tempered stable.

To empirically compare the GARCH model with different distributions, we apply them to the daily 
return of the S&P 500 index. The results suggest that the GARCH model with tempered stable outper-
forms that with all the other distributions. Additionally, the density of the fitted tempered stable is 
closer to the density of the standardized residuals, compared to those of the other fitted distribu-
tions. Besides, the estimated GARCH parameters across different distributions are close to each 
other. The four fitted conditional volatility series are also quite similar.

The contributions of this paper are threefold. First, consistent with existing literature, our simula-
tion evidence systematically demonstrate that GARCH model with the Gaussian distribution is con-
sistent but not efficient, when the true distribution is not Normal. Second, if fitted incorrectly, we 
show that GARCH model with the widely employed Student’s t and GED may introduce considerable 
biases. In contrast, GARCH model with tempered stable distribution can always lead to desirable 
results. Therefore, for a financial time series with an unknown fat-tailed underlying distribution, the 
tempered stable should always be employed within a GARCH framework. This finding satisfactorily 
answers our research question and significantly contributes to the existing literature. Finally, as evi-
denced by our empirical study, GARCH model with tempered stable distribution has better in- and 
out-of-sample forecasting performance than those with Gaussian, Student’s t and GED. For financial 
practitioners, our result implies that using the tempered stable distribution may largely increase the 
accuracy of their risk measures with the GARCH model. This can further benefit their portfolio man-
agement and other enterprise risk management issues.

The remainder of this paper proceeds as follows. Section 2 describes the specification of the 
GARCH model. Section 3 explains how the Student’s t, GED and tempered stable distributions can be 
applied to the GARCH model. We conduct three independent simulation studies in Section . The 
empirical results are discussed in Section. Section 6 concludes the paper.

2. GARCH model
GARCH model is derived by Bollerslev (1986), which is a direct extension of the ARCH model proposed 
by Engle (1982). Because of its capabilities to capture some important characteristics of financial 
time series (for example, time varying heteroskedasticity and volatility clustering), GARCH model has 
become a standard way to study financial volatility (Ho et al., 2013). The original GARCH(1,1) model 
has the following specification.

where rt is the interested financial time series, �t is the residual series, ht is its conditional variance 
and �t is an identical and independent sequence. Therefore, the parameter � + � measures the vola-
tility persistence, which means how fast the current shock to the volatility will die away (Ho et al., 
2013). In order to ensure that ht is stationary and always positive, Bollerslev (1986) suggests to apply 
the constraints 𝛼 + 𝛽 < 1 and �, �, � ≥ 0.

In order to estimate parameters of GARCH model, Maximum Likelihood Estimation (MLE) is employed. 
Therefore, the series �t needs to follow a specific distribution. Originally, GARCH model is developed 
based on Standard Normal (Gaussian) distribution. In other words, �t = �t∕

√
ht ∼ N(0, 1).

2 Hence, 
the conditional density of �t can be constructed as follows.

(1)
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t
= � + �
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Then, the log-likelihood function corresponding to Equation (2) is:

and MLE estimator 𝜃̂ is obtained by maximizing Equation (3). Additionally, standard deviation of 𝜃̂ is 
acquired by taking square root of diagonal terms of the inversed fisher information (see Bollerslev, 
1986 for details).

However, significant evidence suggests that the financial time series is rarely Gaussian but typi-
cally leptokurtic and heavy-tailed (see, for example, Bollerslev, 1987). Therefore, if the true distribu-
tion is not Gaussian, MLE standard deviation of 𝜃̂ estimated in the above procedure will be 
inconsistent. To solve this problem, the Quasi-Maximum Likelihood Estimation (QMLE) based on 
Gaussian is further derived. The algorithm of QMLE to estimate 𝜃̂ is the same as described that by 
Equations (2) and (3). The only difference is the way to estimate a robust standard deviation of 𝜃̂ (see 
Bollerslev & Wooldridge, 1992 for details). It is argued that the QMLE standard deviation is asymp-
totically consistent, even if the true distribution of �t is not Gaussian.

3. Options of alternative distributions

3.1. Student’s t and general error distribution
Although QMLE can lead to consistent estimates, it is argued that QMLE of GARCH model is not effi-
cient. Among the existing literature, Student’s t-distribution and General Error Distribution (GED) are 
two widely used alternatives in finance research (Chkili et al., 2012; Fan et al., 2008; Mabrouk & 
Saadi, 2012; 2011). Both of those two distributions can capture leptokurtic and heavy-tail behav-
iours. When they are applied to the GARCH model, the corresponding density functions of �t are de-
scribed below.

and v is the degree of freedom. Then, the MLE estimator 𝜃̂ can be obtained in the same way as that 
described in Section 2.

3.2. Tempered stable distribution

3.2.1. Symmetric �-stable distribution
Despite their attractive properties to capture excess kurtosis and fat-tails, existing literature argues 
that the Student’s t and GED distributions still have unsolved problems. For example, Yang and 
Brorsen (1993) indicate that the tail behaviour of GARCH model remains too short even with Student’s 
t-distributed error terms. Furthermore, Calzolari et al. (2014) suggests that the Student’s 
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t-distribution and GED lack the stability-under-addition property. Since stability is desirable in port-
folio applications and risk management, a distribution could overcome this issue is of particular 
importance.

As suggested by Calzolari et al. (2014), the �-stable distribution (also known as stable family of dis-
tributions) is a replacement of the traditionally used fat-tail distribution. Its most outstanding charac-
teristic is that �-stable distribution can further overcome the stability problem of the Student’s t. The  
�-stable distribution constitutes a generalization of the Gaussian distribution by allowing for asym-
metry and heavy tails. In general, a random variable x is said to be stably distributed if and only if, 
for any positive numbers c1 and c2, there exists a positive number k and a real number d such that

where x1 and x2 are independent variables and have the same distribution as x. The notation d= indi-
cates equality in distribution. In particular, if d = 0, x is said to be strictly stable. According to 
Calzolari et al. (2014), theoretical foundations of �-stable distribution lay on the generalized central 
limit theorem, in which the condition of finite variance is replaced by a much less restricting one 
concerning a regular behaviour of the tails.

Since �-stable distribution does not have a closed form of density function, the best way to de-
scribe it is by means of its characteristic function. If we only consider the symmetric �-stable distri-
bution case, then its characteristic function is of the form

where � ∈ [0, 2] is the index of stability or characteristic exponent that describes the tail-thickness 
of the distribution (small values correspond to thick tails), � ∈ R+ is the scale parameter and � ∈ R 
is the location parameter (Calzolari et al., 2014). The symmetric �-stable distribution is then charac-
terized by (�, �, �) and is denoted as S(�, �, �). Therefore, the standardized symmetric version is 
S(�, 1, 0) with the following characteristic function

Despite its attractive properties, the second moment of the symmetric �-stable distribution does 
not exist in most cases. Consequently, the application of this distribution to GARCH model will cause 
serious problems. For instance, the interpretation of conditional volatility would fail. Therefore, the 
sought of substitute of the symmetric �-stable distribution, which has similar attractive properties 
and defined second moment, would be of particular interest.

3.2.2. GARCH model with tempered stable distribution
The general case of tempered stable distribution is characterized by six parameters and denoted as 
TS(�+, C+, �+; �−, C−, �−). The levy measure of such a random variable x is

Therefore, a tempered stable distribution with zero mean has the following characteristic function 
(Cont & Tankov, 2004).

(5)kx + d
d
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where 𝛼+, 𝛼−
< 2 and C+, C−, 𝜆+, 𝜆−

> 0. As pointed out by Küchler and Tappe (2013), the above 
tempered stable distribution has defined second moment, so that it can be further applied to de-
scribe the innovation of GARCH model. Additionally, they suggest that the behaviour of the sample 
paths of x depends on the values of �+ and �−. In particular, if �+ = �

−, x follows a classical tempered 
stable distribution. In addition, if we further require C+ = C−, then x follows a CGMY distribution (Carr, 
Geman, Madan, & Yor, 2002).

• � For 𝛼+, 𝛼−
< 0 we have 𝜈( R) < ∞, and thus, x is a compound Poisson process.

• � For �+, �− ∈ [0, 1) we have �( R) = ∞, but ∫ 1
−1

|x|𝜈(dx) < ∞. Therefore, x is a finite-variation 
process making infinitely many jumps in each interval of positive length, which we can express 
as xt =

∑
s≤t Δxs.

• � For �+, �− ∈ (1, 2) we have ∫ 1
−1

|x|�(dx) = ∞. Thus, x has sample paths of infinite variation.To 
apply this distribution into GARCH model, we require x to be standardized so that it has zero 
mean and unit variance. Bianchi, Rachev, Kim, and Fabozzi (2010) argues that one way to 
achieve the standardization is to let

where p ∈ (0, 1). Then, x ∼ TS(�+, �+, �−, �−, p) has zero mean and unit variance.

Combining Equations (9) and (10), we now have a standardized tempered stable distribution. This 
distribution is expected to retain all the attractive properties similar to those of �-stable distribution 
and can be further employed to describe the standardized residual of GARCH model.

In terms of estimation, MLE can still be used. Since the tempered stable distribution also does not 
have a closed form of density function, the discrete Fourier transform method is employed to obtain 
the estimates of parameters for its characteristic function described in Equations (9) and (10) (Kim, 
Rachev, Bianchi, & Fabozzi, 2008).3 The detailed algorithm of estimation can be found in Shi and Feng 
(2015).

4. Comparisons between distributions
In this section, we will conduct three simulation studies to compare the performance of GARCH 
model with Normal, Student’s t, GED and tempered stable distributions. The data generation process 
is GARCH(1,1) in all cases. True distributions are therefore Student’s t, GED and tempered stable, 
respectively.

4.1. Simulation study: Student’s t distribution
First, we set the true distribution as Student’s t with 3 degrees of freedom. Altogether, nine sets of 
simulations of the GARCH(1,1) process with different �, � and T (sample size) are generated, where 
� = 0 and � = 0.1. To avoid the starting bias, 10,000 points are generated for each simulation, and 
then only the last 3,000, 4,000 or 5,000 points are used. Moreover, to avoid simulation bias, 500 such 
replicates are produced for each combination, while the first 200 are discarded.4

The simulated data are fitted into GARCH model with Normal (GARCH-N), Student’s t (GARCH-t), 
GED (GARCH-G) and tempered stable (GARCH-S) distributions, respectively. In Table 1, the log-likeli-
hood (LL), bias, standard error (SE) and root-mean-square-error (RMSE) of �, � and � + � are report-
ed.5 Bias is the mean difference between the true parameter and its estimate, SE is the standard 
error of the estimates, and RMSE is the square root of the mean of squared difference between the 
true parameter and its estimate.

In the case of bias comparison, most absolute values of GARCH-N and GARCH-G are over 0.01, 
whereas those of GARCH-t and GARCH-S are basically smaller than 0.01. More specifically, biases of 

(10)C+ =
p(�+)2−�

+

Γ(2 − �
+)

and C− =
(1 − p)(�−)2−�

−

Γ(2 − �
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� in GARCH-N model are consistently greater than those in other models in all cases. Nevertheless, 
biases of � in GARCH-G model are the greatest when the true value is greater than 0.10. With respect 
to � + �, results of GARCH-G model are the worst when the true volatility persistence is 0.85 or 0.95. 
Therefore, when the true distribution is Student’s t, consistency of GARCH-G estimates is not optimal, 
which is even worse than the result of GARCH-N in certain cases. Furthermore, GARCH-S outperforms 
both GARCH-N and GARCH-G in terms of bias. It also has very similar results to the true model 
GARCH-t.

SE is widely used to measure the estimation efficiency. It is observed that SEs of GARCH-t, GARCH-G 
and GARCH-S are roughly on the same scale and all much smaller than those of GARCH-N. Hence, 
this result is consistent with the argument that QMLE of GARCH model is not efficient. More specifi-
cally, SEs of � in GARCH-G are overall slightly smaller than those of GARCH-S. For � and � + �, GARCH-S 
generally has relatively better or similar results to GARCH-G. However, since small SE can be gener-
ated in large bias case, it is not sensible to compare SE without considering the situation of bias. 
Thus, RMSE is a combination of bias and SE, which is employed as the overall performance indicator 
in many existing simulation studies. Consistent with the results of SE, GARCH-N has the largest RMSE 
in all cases. Most of RMSE in GARCH-S model are smaller than those in GARCH-G, especially for the 
sets where � and � are comparatively larger. This result is consistent for estimates of �, � and � + �. 
When compared with RMSEs of GARCH-t model, those of GARCH-S are still quite similar, though most 
values are slightly greater. Additionally, both SE and RMSE are smaller with the increase in T, which 
is robust across different distributions and GARCH parameters. This result is consistent with the cen-
tral limit theory, suggesting that the efficiency and overall performance will improve if larger sample 
size is available.

Turning to the average log-likelihood, not surprisingly, GARCH-N model has the smallest values in 
all cases. Results of GARCH-G are generally smaller than those of GARCH-t. Nevertheless, it is worth 
noticing that GARCH-S can yield slightly greater log-likelihood compared to the true model GARCH-t.6

To sum up, when the true model is GARCH-t, GARCH-S model outperforms GARCH-N and GARCH-G 
in terms of consistency and overall performance. Nevertheless, it can produce similar results to 
GARCH-t in most cases.

4.2. Simulation study: GED
Next, we set the true distribution as GED with 1 degree of freedom. Nine sets of simulations with the 
same combinations of parameters as those in Section 4 are constructed. Replicates and each simu-
lation are also truncated in the same manners to avoid simulation bias.

Simulation results are reported in Table 2. In the case of bias comparison, GARCH-N outperforms 
GARCH-t for � and most cases of � + �. GARCH-S model still has smaller absolute biases compared 
with GARCH-N and GARCH-t models, which is robust for different �, � and � + �. Additionally, biases 
of GARCH-S are very close to those of the true model GARCH-G. As to the SE comparison, GARCH-N 
still has the largest values for � and � + �, whereas GARCH-t is the least efficient to estimate �. SEs 
of GARCH-S is generally smaller than those of GARCH-N and GARCH-t, and are still similar to those of 
GARCH-G. Finally, the overall performance indicator RMSE suggests that GARCH-N basically outper-
forms GARCH-t for � but is still worse than other models for estimating � and � + �. Moreover, RMSEs 
of GARCH-S are consistently smaller than those of GARCH-N and GARCH-t in most cases and are 
close to those of GARCH-G. Apart from that, both SE and RMSE are also decreasing with the increase 
in T in all cases. Turning to the log-likelihood, the situation here is exactly the same as that in Section 
4. GARCH-N has the smallest values, and GARCH-S has larger values than those of the true model 
GARCH-G.

To sum up, GARCH-S model outperforms GARCH-N and GARCH-t models in terms of consistency, 
efficiency and overall performance in most cases. Besides, results of GARCH-S model are very close 
to those of true model GARCH-G.
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4.3. Simulation study: Tempered stable
In this section, we set the true distribution as tempered stable with three sets of different parame-
ters (all the p are set to 0.5), including one case of CGMY distribution (when �+ = �

− = 0.5 and 

Table 2. Simulation Results: GED distribution
� � T Mean

ll
Bias

�
SE

�
RMSE

�
Bias

�
SE

�
RMSE

�
Bias

�+�
SE

�+�
RMSE

�+�

Panel A: Normal distribution

0.10 0.65 3,000 −2, 811 0.0034 0.0295 0.0297 −0.0206 0.1021 0.1041 −0.0172 0.0875 0.0892

4,000 −3, 763 0.0043 0.0233 0.0237 −0.0264 0.0985 0.1020 −0.0221 0.0862 0.0890

5,000 −4, 702 0.0022 0.0217 0.0219 −0.0116 0.0834 0.0842 −0.0094 0.0704 0.0710

0.15 0.70 3,000 −3, 467 0.0005 0.0295 0.0295 −0.0081 0.0554 0.0560 −0.0075 0.0405 0.0412

4,000 −4, 631 0.0030 0.0255 0.0257 −0.0082 0.0475 0.0482 −0.0051 0.0353 0.0357

5,000 −5, 769 −0.0004 0.0225 0.0225 −0.0030 0.0474 0.0475 −0.0034 0.0350 0.0352

0.20 0.75 3,000 −4, 585 0.0041 0.0319 0.0322 −0.0047 0.0334 0.0337 −0.0006 0.0186 0.0186

4,000 −6, 117 0.0017 0.0262 0.0262 −0.0041 0.0268 0.0271 −0.0024 0.0169 0.0171

5,000 −7, 637 −0.0011 0.0231 0.0232 −0.0010 0.0246 0.0246 −0.0021 0.0139 0.0141

Panel B: Student’s t-distribution

0.10 0.65 3,000 −2, 624 0.0218 0.0317 0.0385 −0.0137 0.0902 0.0913 0.0082 0.0769 0.0773

4,000 −3, 516 0.0224 0.0266 0.0348 −0.0178 0.0760 0.0780 0.0046 0.0649 0.0650

5,000 −4, 389 0.0218 0.0244 0.0327 −0.0125 0.0754 0.0764 0.0094 0.0621 0.0628

0.15 0.70 3,000 −3, 279 0.0286 0.0342 0.0446 −0.0069 0.0529 0.0534 0.0217 0.0398 0.0453

4,000 −4, 380 0.0293 0.0302 0.0421 −0.0046 0.0454 0.0456 0.0247 0.0346 0.0425

5,000 −5, 457 0.0281 0.0262 0.0384 −0.0052 0.0423 0.0426 0.0229 0.0306 0.0382

0.20 0.75 3,000 −4, 398 0.0353 0.0325 0.0479 −0.0027 0.0299 0.0300 0.0325 0.0179 0.0371

4,000 −5, 867 0.0352 0.0258 0.0437 −0.0032 0.0241 0.0243 0.0320 0.0173 0.0364

5,000 −7, 325 0.0344 0.0245 0.0423 −0.0007 0.0242 0.0242 0.0337 0.0159 0.0372

Panel C: GED distribution

0.10 0.65 3,000 −2, 596 0.0027 0.0255 0.0256 −0.0166 0.0898 0.0913 −0.0139 0.0780 0.0792

4,000 −3, 478 0.0035 0.0205 0.0208 −0.0191 0.0774 0.0797 −0.0156 0.0674 0.0692

5,000 −4, 342 0.0025 0.0194 0.0196 −0.0117 0.0731 0.0741 −0.0092 0.0619 0.0626

0.15 0.70 3,000 −3, 252 0.0003 0.0271 0.0271 −0.0069 0.0504 0.0509 −0.0066 0.0367 0.0373

4,000 −4, 344 0.0016 0.0229 0.0229 −0.0054 0.0434 0.0437 −0.0038 0.0322 0.0324

5,000 −5, 410 −0.0001 0.0200 0.0200 −0.0040 0.0412 0.0414 −0.0041 0.0301 0.0304

0.20 0.75 3,000 −4, 370 0.0025 0.0282 0.0284 −0.0034 0.0296 0.0298 −0.0009 0.0167 0.0167

4,000 −5, 830 0.0012 0.0225 0.0225 −0.0035 0.0234 0.0237 −0.0023 0.0161 0.0163

5,000 −7, 278 −0.0012 0.0200 0.0201 −0.0008 0.0229 0.0229 −0.0019 0.0138 0.0139

Panel D: Tempered stable distribution

0.10 0.65 3,000 −2, 590 0.0030 0.0258 0.0259 −0.0173 0.0878 0.0895 −0.0143 0.0759 0.0772

4,000 −3, 473 0.0032 0.0213 0.0215 −0.0190 0.0802 0.0824 −0.0157 0.0709 0.0727

5,000 −4, 337 0.0026 0.0202 0.0204 −0.0124 0.0753 0.0763 −0.0098 0.0641 0.0648

0.15 0.70 3,000 −3246 0.0007 0.0297 0.0298 −0.0065 0.0540 0.0544 −0.0058 0.0387 0.0391

4,000 −4, 338 0.0022 0.0236 0.0237 −0.0077 0.0453 0.0460 −0.0055 0.0340 0.0344

5,000 −5, 405 −0.0004 0.0207 0.0207 −0.0034 0.0414 0.0415 −0.0037 0.0302 0.0304

0.20 0.75 3,000 −4, 364 0.0031 0.0295 0.0297 −0.0037 0.0311 0.0313 −0.0006 0.0182 0.0183

4,000 −5, 824 0.0023 0.0239 0.0240 −0.0047 0.0241 0.0245 −0.0024 0.0173 0.0175

5,000 −7, 272 −0.0015 0.0208 0.0208 −0.0007 0.0239 0.0239 −0.0021 0.0145 0.0146

Notes: This table presents the simulation results where the true distribution is GED. For explanation of variables, please see Table 1.
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�
+ = �

− = 1.0) and two general cases. Altogether, nine sets of simulations are constructed, where 
the combination of � and � are the same as those in Sections 4 and 4.2. Sample size is set to 5,000 
in all cases. Replicates and each simulation are further truncated in the same manners as in Sections 
4 and 4.2 to avoid simulation bias.

Simulation results are reported in Table 3. In the case of bias comparison, similar to the results of 
Section 4.2, GARCH-N outperforms both GARCH-t and GARCH-G for � and most cases of � + �. 
Compared to the true model GARCH-S, GARCH-N has similar results for � and relatively greater abso-
lute biases for � + �. As for �, four models yield absolute biases close to each other, and most of 
them are smaller than 0.01. For the SE comparison, GARCH-G has the smallest SEs for �, whereas 
GARCH-t is the least efficient in most cases. In terms of � and � + �, GARCH-N has the largest SEs, 
and results of the other three models are comparatively similar. Finally, the overall performance in-
dicator RMSE suggests that GARCH-N basically outperforms GARCH-t for �. Results of GARCH-G and 
GARCH-S are quite close. For �, RMSEs of GARCH-N are the largest, while those of the other three 
models are close to each other. With respect to the volatility persistence, GARCH-t has the largest 
RMSEs for large � + � (0.85 and 0.95), whereas GARCH-N is the least preferred when � + � = 0.75. 
Moreover, GARCH-G consistently outperforms GARCH-N in all cases. Roughly speaking, the true mod-
el GARCH-S is preferred to GARCH-G in most combinations. Turning to the log-likelihood, GARCH-N 
generates the smallest values. When the true distribution is CGMY, GARCH-G is preferred to GARCH-t. 
Otherwise, GARCH-t yields greater value than GARCH-G. In all cases, unsurprisingly, GARCH-S leads 
to the greatest log-likelihoods.

In conclusion, when the true distribution is Student’s t or GED, GARCH-S model consistently out-
performs the competing models except for the true model (in terms of the RMSE). Also, the results of 
GARCH-S and those of the true model are very close in most situations. Nevertheless, GARCH-S can 
even generate larger values of log-likelihood than the true model. When the true distribution is tem-
pered stable, all the GARCH-N, GARCH-t and GARCH-G models cannot perform as well as the GARCH-S 
model. All the above observations are robust across different combinations of GARCH parameters 
and sample sizes. Therefore, we argue that for a given financial time series with an unknown fat-
tailed distribution, GARCH-S model is an optimal candidate to study its second moment properties.

5. Empirical results
To empirically compare GARCH models with Normal, Student’s t, GED and tempered stable distribu-
tions, we fit them for the daily S&P 500 Index (SP500). The daily closing prices for SP500 over the 
period from 1 January 2001 to 31 December 2013 are obtained from the TRTH database, which 
contains microsecond-time-stamped tick data dating back to January 1996. The database covers 35 
million OTC and exchange-traded instruments worldwide, which are provided by the SIRCA. The cor-
responding return in the percentage series is defined as the logarithm of the daily closing price dif-
ferences times 100; i.e. rt = 100 × log(St∕St−1).

The level and return of SP500 are plotted in Figure 1. In the level plot, there are two periods where 
SP500 level has clear decreasing trends: from 2001 to 2003 and from 2008 to 2009. In the return 
plot, the volatility of return is relatively greater between 2001 and 2003 and then decreases. From 
2008 to 2010, the return becomes much more volatile again. After 2010, the volatility tends to be 
smaller, with some turbulences around the end of 2010 and the beginning of 2012. In addition, the 
mean and standard errors of the SP500 return are 0.0112 and 1.3076, respectively. The skewness is 
−0.1885, indicating that the SP500 return is slightly negatively skewed. After fitting a GARCH(1,1)-N 
model, we find that the standardized residuals have a kurtosis of 11.3400, suggesting a non-Gauss-
ian distribution. Thus, we perform the Kolmogorov–Smirnov and Jarque–Bera normality tests (not 
presented), where the null hypotheses indicating normality are rejected in both cases (p-values are 
0.0000). As a result, GARCH models with non-Gaussian distributions are expected to outperform the 
GARCH-N model.
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The estimates of GARCH(1,1) models with four different distributions are presented in Table 4. 
Overall, all estimates of parameters are significant at 5% level in all models, and their magnitudes 
are fairly close across different models. More specifically, � and � are estimated to be around 0.09 
and 0.90, respectively, in all models. Estimates of � + � are at around 0.99, suggesting that volatility 
of SP500 return is remarkably persistent over the entire period. To compare the models, both log-
likelihood and Akaike Information Criterion (AIC) are presented. It can be seen that GARCH models 
with non-Gaussian distributions are all preferred to the GARCH-N model. GARCH-G outperforms 
GARCH-t, whereas GARCH-S performs the best among them.

To further explore the models, we report the smoothed density plot of the standardized residuals7 
of the SP500 return in Figure 2. To compare the fitness of the distributions, we also plot the densities 
of Student’s t and GED distributions with 7.6493 and 1.3833 degrees of freedom,8, respectively. 
Moreover, density of tempered stable distribution with parameters as estimated in Table 4 is also 
reported. It is clear that the fitted tempered stable density has a much more similar shape to that of 
the standardized residuals than the others. This provides further evidence that the GARCH-S outper-
forms the other GARCH models.

Finally, all the four estimated conditional volatility series9 are plotted in Figure 3. Despite their dif-
ferent model performance, the four estimated conditional volatility series demonstrate shapes 
fairly close to each other. It could be due to the similarity of estimates of GARCH parameters (�, � 
and �). The trends of those series are consistent with our observation of the return series: compara-
tively more turbulent in the periods 2001–2003 and 2008–2010. This is concordant with the real 

Figure 1. S&P 500 daily index 
and return.
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macro-economic situation: the Dot-com bubble burst at the start of the twenty-first century, and its 
effect lasted for around two years. On the other hand, the 2008 Global Financial Crisis happened in 
mid-2008 and last until roughly the end of 2010.

Despite their similarities, the difference between the fitted conditional volatilities can be described 
as the different in-sample forecasting performance of the fitted models. To quantitatively compare 

this performance, we measure the prediction error for each model by 
||||

√
ĥt − |rt|

||||
, where ĥt is the 

fitted ht for each model, and |rt| is employed to proxy the true conditional volatility. The results are 
reported in Panel A of Table 5. Moreover, to consider the out-of-sample forecasts, we use the last 
100 observations as the prediction sample and the others as the training sample. Then, we fit each 
model for the training sample and calculate the one-step ahead forecast of ht. After that, we include 

Figure 3. Estimated daily 
volatility.

Figure 2. Density plots of S&P 
500 return and choices of 
distributions.
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the first observation in the training sample and generate another one-step-ahead forecast. We re-
peat this rolling-window approach until 100 such one-step-ahead forecasts are produced. Then, we 
calculate the absolute difference between them and the corresponding |rt|, which measures the 
out-of-sample forecasting errors. The results are reported in Panel B of Table 5. It is observed that 
GARCH-S leads to the smallest average forecasting errors in both the in-sample and out-of-sample 
cases. GARCH-S also generates the smallest variations of forecasting errors, as measured by the 
standard deviation. Additionally, in terms of the average forecasting errors, GARCH-G outperforms 
the GARCH-t, and GARCH-N is the least preferred model in both cases.

6. Conclusion
GARCH model has enjoyed particular popularity in the finance research. Despite its well-established 
properties, in practice, GARCH model can lead to more efficient estimates when an appropriate 

Table 4. Empirical results: S&P 500 index
Norm Std-t GED T.Stb

� 0.0512 (0.0007) 0.0641 (0.0000) 0.0689 (0.0000) 0.0443 (0.0000)

� 0.0159 (0.0000) 0.0113 (0.0010) 0.0133 (0.0003) 0.0103 (0.0000)

� 0.0866 (0.0000) 0.0848 (0.0000) 0.0863 (0.0000) 0.0879 (0.0000)

� 0.9013 (0.0000) 0.9091 (0.0000) 0.9049 (0.0000) 0.9064 (0.0000)

� 7.6493 (0.0000) 1.3833 (0.0000)

a
1

−0.1377 (0.0251)

a
2

−1.2381 (0.0178)

�
1

2.7546 (0.0000)

�
2

3.0146 (0.0000)

p 0.4954 (0.0000)

� + � 0.9879 0.9939 0.9912 0.9943

log.lik −4, 707 −4, 663 −4, 653 −4, 639

AIC 9,422 9,334 9,314 9,296

Notes: This table presents the estimates of daily SP500 data fitted by the GARCH model with Normal, Student’s t,  GED and 
tempered stable distributions.   The data are ranging from 1 January 2001 to 31 December 2013.  Norm,  Std −t and T .Stb 
stand for Normal, Student’s t and tempered stable distributions, respectively. log.lik is the log- likelihood. AIC is the Akaike 
Information Criterion.  Values in the parentheses are the corresponding p-values.

Table 5. Forecasting results: S&P 500 index
Mean SD Median Q

1
Q
3

Panel A: In-sample forecasts

Norm 0.0732 0.2182 0.0720 0.0215 0.1647

Std-t 0.0681 0.2103 0.0711 0.0193 0.1513

GED 0.0637 0.2201 0.0693 0.0187 0.1481

T-Stb 0.0529 0.2142 0.0631 0.0131 0.1392

Panel B: Out-of-sample forecasts

Norm 0.1831 0.1321 0.1181 0.0981 0.2771

Std-t 0.1713 0.1331 0.1132 0.0870 0.2693

GED 0.1641 0.1362 0.1056 0.0873 0.2631

T-Stb 0.1362 0.1314 0.0973 0.0802 0.2045

Notes: This table presents the in- and out-of-sample forecasting performance of the GARCH model with Normal, Student’s 
t, GED and tempered stable distributions with the SP500 data. Norm, Std −t and T .Stb stand for Normal, Student’s t 
and tempered stable distributions, respectively. SD, Q1 and Q3 stand for the standard deviation, first quartile and third 
quartile, respectively.
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fat-tailed distribution is employed. As widely used alternatives, the Student’s t-distribution and the 
GED are the popular choices in many existing studies. However, a recent study by Calzolari et al. 
(2014) points out that due to the instability under aggregation, the Student’s t and GED are not op-
timal choices. Motivated by those findings, this paper aims to find an appropriate distribution for 
disturbances of the GARCH model, when the underlying distribution is a fat-tailed but unknown type.

Calzolari et al. (2014) introduce the �-stable distribution, which outperforms the Student’s t and 
GED for its stability-under-aggregation feature. Unfortunately, the undefined second moment of this 
candidate brings in even more serious problems. To solve this issue, our paper argues that the tem-
pered stable distribution should be employed instead. Via systematically designed simulation stud-
ies on the GARCH process, we systematically demonstrate the appropriateness of the tempered 
stable distribution applied in the GARCH model. The first two studies assume that the true distribu-
tions are the Student’s t and GED, respectively. In such cases, results of GARCH-S are close to those 
of the true models. Additionally, GARCH-S outperforms the other competing models in terms of con-
sistency, efficiency and overall performance. We construct different combinations of the tempered 
stable distribution to simulate the GARCH process in the third study. Our results suggest that none of 
the GARCH-N, GARCH-t and GARCH-G can perform as well as the GARCH-S model.

Finally, empirical evidence is further provided to check the robustness of our simulation results in 
practice. We fit the daily return of the S&P 500 index into the four GARCH models respectively. Our 
results indicate that GARCH-S is still preferred to all the other models, and the density of the fitted 
tempered stable distribution is the closest to the smoothed estimates of the data.

In particular, we demonstrate that GARCH-S has better in- and out-of-sample forecasting perfor-
mance than all the other models. Hence, the tempered stable distribution could be a widely useful tool 
for modelling the financial volatility in general contexts with a GARCH-type specification. For instance, 
financial practitioners can use GARCH-S to significantly increase the accuracy of their risk measures, 
which can further benefit their portfolio management and other enterprise risk management issues.
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Note
1. In this case, the associated Levy processes are called 

“truncated Levy flights”, the appropriateness of which 
to be applied in the GARCH model is also discussed in 
Constantinides and Savel’ev (2013)

2. Since the mean of �
t
 is 0, �

t
 is sometimes named as 

standardized residual.
3. As argued by Mittnik, Doganoglu, and Chenyao (1999), 

compared to other approximation methods, discrete 
Fourier transform is accurate and efficient to estimate 
parameters of stable family distributions, especially 
when N = 213 or above. Therefore, we set N as 215 in this 
paper.

4. Different random number generators may have their 
own algorithms to apply the pseudo values to produce 
the simulations. We discard the first few replicates 
to avoid any bias or cycling effects may exist in those 
algorithms.

5. Since either � or � itself cannot be interpreted for finan-
cial data, we also report the comparison of volatility 
persistence indicated by � + �.

6. Although tempered stable distribution has four more 
parameters than Student’s t-distribution, the improve-
ment of log-likelihood is still a positive indicator that 
GARCH-S can lead to satisfied results even when the 
true distribution is not tempered stable.

7. Standardized residuals are extracted from GARCH(1,1)-N 
model.
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8. Both values are extracted from the corresponding esti-
mates reported in Table 4.

9. We report conditional volatility here as the square root 
of h

t
, so that it has the same scale as r

t
.
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