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Abstract. Latrepirdine (DimebonTM) has been demonstrated to be a neuroprotective and cognition improving agent in neurode-
generative diseases that feature protein aggregation and deposition, such as Alzheimer’s disease (AD). The accumulation of
amyloid-� (A�) protein aggregates is a key event in the neurodegenerative process in AD. This study explores if latrepirdine
modulation of protein aggregation contributes to its neuroprotective mechanism of action. Assessment of neuronal cell death
showed that there was a significant reduction in lactate dehydrogenase release at an equimolar ratio of A�:latrepirdine and
with lower concentrations of latrepirdine. The ability of latrepirdine to alter the formation of A�42 aggregates was assessed
by thioflavin-T fluorescence, western immunoblotting and atomic force microscopy (AFM). Despite showing a reduction in
thioflavin-T fluorescence with latrepirdine treatment, indicating a decrease in aggregation, immunoblotting and AFM showed a
modest increase in both the formation and size of A� aggregates. The discrepancies between thioflavin-T and the other assays are
consistent with previous evidence that cyclic molecules can interfere with thioflavin-T binding of amyloid protein preparations.
The ability of latrepirdine to modulate A� aggregation appears to be independent of its neuroprotective effects, and is unlikely
to be a mechanism by which latrepirdine offers protection. This study investigates the effect of latrepirdine on A� aggregation,
and presents evidence suggesting that caution should be applied in the use of thioflavin-T fluorescence based assays as a method
for screening compounds for protein aggregation altering properties.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of senile dementia. It is clinically charac-
terized by a progressive deterioration of memory,
cognitive function, and the ability to perform daily
tasks. Pathologically AD is characterized by severe
cerebral atrophy due to a loss of hippocampal and
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neocortical neurons [1]. Major neuropathological hall-
marks include neurofibrillary tangles (consisting of
aggregates of the tau protein), and extracellular depo-
sition of amyloid plaques, comprised mainly of
aggregates of a protein known as amyloid-� (A�) [2].
The accumulation of A� is thought to occur early in
the disease process, prior to onset of clinically relevant
symptoms [3]. Increases in cerebral levels A� have
key roles in downstream events that lead to neurode-
generation, including tau hyperphosphorylation and
accumulation [4].
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The A� protein is generated from the processing
of its parent protein, the amyloid-� protein precur-
sor (A�PP), (reviewed [5]). Enzymatic cleavage of
A�PP via �-secretase, followed by �-secretase, gener-
ates multiple A� species, including the more common
soluble monomeric peptides of 40 amino acids and the
more insoluble A� peptide of 42 amino acids (A�42).
In AD, A�42 monomers aggregate into progressively
larger species under various physiological conditions,
and these different forms can differentially affect neu-
ronal function [6]. Both soluble and insoluble A�
forms exist in brain [7], and it is now recognized that
an aberrant increase in soluble A� correlates to a dis-
ease phenotype and is correlated with disease severity
[7, 8].

Oligomer and fibril forms of A� are the most com-
mon species found in the brains of AD patients. Both
synthetic and naturally secreted human A� oligomers
have been shown to reduce long-term potentiation [9].
Furthermore, the effects of A� oligomers on long-
term potentiation, and the accumulation of aggregates,
can be reduced in vivo through an application of anti-
A� antibodies [10, 11]. These results strongly support
a causative role for A� aggregation in the cogni-
tive dysfunction observed in AD. Enhancing effective
clearance of A� aggregates, and the modulation of A�
aggregation to reduce deposition and toxicity in the
brain, have been considered as potential therapeutic
strategies in AD [12].

One of the more recent drugs to be tested for
its efficacy against AD is latrepirdine. Latrepirdine
(DimebonTM) has been shown in vitro and in vivo to
be neuroprotective [13]. However, its mode of action
is largely uncharacterized and poorly understood.
Latrepirdine is an orally-available, small molecule
previously approved in Russia as a non-selective
antihistamine [14]. Preclinical trials in rats with
induced cognitive impairment showed that latrepir-
dine improved their learning skills and memory when
compared to both untreated rats and rats treated
with anticholinesterase inhibitors [14]. Furthermore,
latrepirdine has been shown to protect neuronal cul-
tures against A�42-induced toxicity [14]. Clinical trials
for latrepirdine as a treatment for AD, however, have
produced mixed results. The initial clinical study on a
Russian cohort showed that patients receiving latrepir-
dine had improved measures of cognitive ability,
function, and behavior when compared to both base-
line and placebo patients [15]. However, in subsequent
phase 3 clinical trials, a 6-month US-based replica-
tion trial (CONNECTION) and a 12-month trial with
patients enrolled in the US, Australia, New Zealand,

and Western Europe (CONCERT), latrepirdine treat-
ment showed no benefits [16–18]. The exact causes for
the mixed results in the AD clinical trials are unknown,
in addition to trial design and targeting patients with
late stage symptoms and significant neuronal damage,
a lack of understanding of the exact mechanism of
action of the drug, could be contributing factors [19].

Latrepirdine has been shown to have effects on a
number of cellular functions (reviewed [20, 21]) as
well as protect neuronal cultures from A� toxicity
[14], and significantly reduce intracellular A�42 lev-
els in in vitro cell based and in vivo animal based AD
studies [22]. A protective role of latrepirdine has been
shown by the clearance of �-synuclein and �-synuclein
in mouse brain and neuronal cells [23, 24]. Latrepir-
dine has also been shown to inhibit the aggregation of
the TDP-43 protein involved in the pathology of amy-
otrophic lateral sclerosis [25]. Our own findings in a
yeast model have shown that latrepirdine can reduce
A�42 aggregates [26]. These findings suggest that the
ability of latrepirdine to modulate protein aggregation
may account for its action in promoting the clearance
of protein aggregates and thus contribute to the under-
lying neuroprotective mechanism of action. This study
addressed this by investigating the effect of latrepirdine
on A� aggregation.

MATERIALS AND METHODS

Materials

High-performance liquid chromatography (HPLC)
purified (95% purity) synthetic human beta amyloid
(A�; Lot 2534), was purchased from WM Keck Foun-
dation (Yale University, New Haven, CT). Latrepirdine
(Dimebolin dihydrochloride MW: 392.37) was pur-
chased from Biotrend AG (Zurich). Thioflavin-T
was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Mouse monoclonal antibody WO2, raised
against amino acid residues 5–8 of N-terminal A�
sequence [27] was kindly provided by Professor Colin
Masters (University of Melbourne, VIC, Australia).
Horseradish peroxidase (HRP) conjugated anti-mouse
antibodies were purchased from GE (Rydalmere,
NSW, Australia). NuPage Novex 4–12% Bis-Tris
gels, lithium dodecyl sulfate (LDS) sample buffer
(40% glycerol 4% LDS, 0.025% phenol red, 0.025%
serva blue G250, 2 mM ethylenediaminetetraacetic
acid (EDTA) disodium, pH 7.6), 2–(N–morpholino)
ethanesulfonic acid (MES) running buffer (50 mM
Tris base, 50 mM MES, 1 mM EDTA, 0.1% SDS
at pH 7.3), and the iBlot Western transfer kit
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were all purchased from Invitrogen (Mulgrave, VIC,
Australia). 3–(N–morpholino propanesulfonic acid
(MOPS) sample buffer (50 mM MOPS, 50 mM Tris,
20% glycerol, 0.05% Coomassie), MOPS/Coomassie
running buffer (50 mM MOPS, 50 mM 50 mM Tris,
0.002% Coomassie), and MOPS running buffer
(50 mM MOPS, 50 mM Tris) were used for blue native
gel electrophoresis.

The SHSY5Y neuronal cell line was obtained from
ATCC Global Bioresource Centre, and was cultured at
37◦C in a 5% CO2 atmosphere. Cell culture medium
used was Dulbecco’s Modified Eagle Medium, pur-
chased from Gibco (Mulgrave, VIC, Australia),
supplemented with 10% fetal bovine serum (FBS).
Hams F12 media was purchased from PromoCell
(Heidelberg, Germany). CytoTox One Homogenous
Membrane Integrity assay (LDH assay), and Cell
Titer 96® AQueous One solution Cell Proliferation
assays (MTS Assay) were purchased from Promega
(Madison, WI, USA).

Preparation of Aβ aggregates

A� aggregates were prepared according to the pro-
tocol outlined by Stine et al., with some modification
[28]. Synthetic A� was first dissolved in hexafluo-
roisopropanol (HFIP), to produce a 1 mM solution.
Varying volumes of this solution was then aliquoted
into 1.6 mL Eppendorf tubes and left to evaporate
overnight. The films produced were stored at –80◦C
until required. For both oligomeric and tris buffered
saline (TBS) preparations of A�, a 5 mM stock was
prepared with dimethylsulfoxide (DMSO). To ensure
the A� was completely resuspended the tube was
vortexed and bath sonicated. For the oligomeric prepa-
ration the A�/DMSO solution was diluted to 100 �M
with Hams F12 media and incubated for 24 h at 4◦C.
For the TBS preparation, the A�/DMSO solution was
diluted to 100 �M with TBS and incubated for 24 h at
room temperature.

Thioflavin-T (thioT) fluorescence assay

The effect of latrepirdine on A� aggregation
was measured using the thioT amyloid-binding flu-
orescence assay. Fluorescence was measured using
a FLUOStar Optima (BMG Labtech, Ortenberg,
Germany), excitation and emission maxima were set to
450 nm and 490 nm respectively. The A� was prepared
in the presence or absence of various concentrations
of latrepirdine (20, 50, 100, and 200 �M) and incu-
bated with 5 �M thioT for 16 h with fluorescence

readings made at 10 min intervals. Experiments were
performed in quadruplicate wells and each experiment
was repeated a minimum of three times. Control back-
ground thioT fluorescence was subtracted from all
sample results for each assay.

Western immunoblotting and atomic force
microscopy (AFM) analysis of Aβ aggregates in
the presence of absence of latrepirdine

Samples of 100 ng and 200 ng quantities were ana-
lyzed by 4–12% Bis-Tris gels (MES/Blue Native
Polyacrylamide gel electrophoresis (PAGE) MOPS
buffering). Gels were electro-transferred to nitrocel-
lulose or polyvinylidene fluoride (PVDF) membranes
and analyzed by immunoblotting using WO2 as pre-
viously described [26, 27]. Membranes were blocked
in 5% skim milk in TBS solution for 1 h, primary anti-
body (WO2) was diluted 1/5000 in TBS with 0.05%
Tween 20 (TBST) and 0.5% skim milk solution for
2 h, followed by three washes with TBST. HRP con-
jugated anti-mouse secondary antibody was diluted by
1/5000 in TBST and skim milk solution and incubated
for 1 h. After washing the membranes were incubated
for 2 min with enhanced chemiluminescence reagent
and exposed to Hyperfilm (GE) for periods ranging
from 15 s to 16 h.

For AFM, A� (100 �M) was prepared in the
presence or absence of 1 mM latrepirdine. Samples
were diluted to 25 �M and 5 �L was loaded onto
freshly cleaved V1 grade muscovite mica for AFM.
After 5 min incubation of the sample on the mica
it was washed 3 times with deionized water, and
dried under nitrogen gas. Samples were visualized
using a NT-MDT microscope in semi-contact mode
with the following parameters: a minimum contact
force, amplitude between 0.5–2 V (dependent on can-
tilever) magnitude 20 nA, and scan rates 0.5–1 Hz.
All data was processed using Nova NT-MDT software
v1.1.0.1780. 4 10 �m2 fields of view were examined
for each sample, and the software was used to magnify
areas of interest. The images were produced by the
probes movement across the mica, and the measure-
ments used in the cross sectional analyses were made
from the displacement of the probe as it moved over
the sample.

Neuronal cell viability

The SHSY5Y neuronal cell line was cultured at
37◦C in a 5% CO2 atmosphere in Dulbecco’s Modi-
fied Eagle Medium (DMEM), supplemented with 10%
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FBS. Cells were cultured and treated with oligomeric
preparations of A�. Prior to treatment A� was incu-
bated for 16 h in the presence, or absence, of a
latrepirdine concentration range (3–300 �M). Cells
were plated in 96-well plates, 10,000 cells per well and
incubated for 24 h at 37◦C, 5% CO2. Prior to cell treat-
ment the incubated A� samples were desalted using
3KDa molecular weight cut off, Amicon Biosepara-
tions Centricon columns (Millipore). These samples
were diluted to 30 �M A� in DMEM containing 1%
FBS and Hams F12 media and used to treat the cells.
The cells were incubated for 4 days at 37◦C, with
5% CO2, and cell viability assayed for release of lac-
tate dehydrogenase (LDH), as per the manufacturer’s
instructions (Promega, USA).

Statistical analysis

Data obtained from neuronal cell viability and thioT
assays were evaluated using a one-way ANOVA with
planned contrasts followed by a post hoc Bonferroni
correction for multiple comparisons. Data was graph-
ically represented using means (±standard deviation)
of; % LDH release when compared to a total lysis con-
trol, and thioT fluorescence measurements. The level
of statistical significance was set at 0.05. All statistics

were performed using IBM SPSS Statistics for Macin-
tosh, Version 22.0 (Armonk, NY).

RESULTS

Latrepirdine has been shown to be protective in
serum starved SHSY5Y cells [29] and SHSY5Y cells
expressing �-synuclein [24]. To determine if latrepir-
dine can protect against A� induced neuronal death,
LDH release from SHSY5Y cells was assessed in cells
treated with A� oligomers in the presence of vehicle
and 0.05 to 20 �M of latrepirdine (Fig. 1). Treat-
ment with 20 �M A� in the presence of vehicle led to
60% LDH release. A one-way ANOVA was conducted
comparing the effect of latrepirdine treatment on %
LDH released. Latrepirdine significantly reduced LDH
release from 1 �M latrepirdine (p < 0.005) reaching
a 35% reduction at 20 �M (p < 0.005, 1:1 A�-
latrepirdine molar ratio, Fig. 1, [F(7,16) = 10.583,
p < 0.0005]). A similar reduction in cell death at this
concentration has been reported previously [30]. LDH
release from cells treated with latrepirdine only was
similar to vehicle only treated cells, indicating that at
the concentrations used, latrepirdine did not cause sig-
nificant cell death. Overall, consistent with previous

Fig. 1. Neuronal cell viability assays measured by LDH release. Cells were treated for 4 days with oligomeric A� after its co-incubation in the
presence or absence of various concentrations of latrepirdine. Samples % LDH release when compared to a total lysis control (values represent
means ± standard deviation (n = 4), ∗p < 0.05 after correction for multiple testing, when compared to total lysis control).
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Fig. 2. A) Endpoint thioflavin T assay on A�42 oligomerisation in the absence or presence of latrepirdine. ThioT was added to oligomer A�42
preparations incubated with different concentrations of latrepirdine, followed by measurement of fluorescent intensity. Significant reductions in
fluorescence intensity was observed at all latrepirdine concentrations (values represent means ± standard deviation (n = 3), ∗p < 0.05, ∗∗p < 0.001
after correction for multiple testing, when compared to A�42). B) Thioflavin T assay on A�42 aggregation over 16 h in the presence or absence of
latrepirdine. Fluorescent intensity of A� incubated with latrepirdine and thioT was measured every 10 min for 16 h. A dose dependent reduction
in the maximum fluorescence was observed with latrepirdine treatment.

studies we have shown that latrepirdine can offer
protection against A� toxicity [26, 31]. We next inves-
tigated whether inhibiting A� aggregation could be
a mechanism underlying latrepirdine neuroprotective
effects.

To assess whether latrepirdine can alter A� aggre-
gation, monomeric A�42 was incubated at 4◦C for 24 h
in the presence of increasing doses of latrepirdine. Fol-
lowing incubation, samples were mixed with thioT
solution, and fluorescence readings were measured.
With reference to the A� only control, a significant
dose dependent reduction in thioT fluorescence was
observed upon the addition of latrepirdine (Fig. 2A),
indicating a reduction in A�42 aggregation.

To investigate whether the reduction in thioT flu-
orescence was time dependent, a time course thioT
assay was performed. Assay conditions were modified
slightly to accommodate the instrument constraints. In
particular, latrepirdine was added to A�42 just after the
addition of thioT and incubated at room temperature
(RT) with the fluorescence readings recorded every
10 min for the 16 h time course. The A�42 prepara-
tion was also prepared in a buffered solution (TBS)
which was necessary for the prolonged incubations at
RT. Direct comparisons by SDS-PAGE of oligomeric
preparations with TBS preparations reveals similar
aggregates were formed (Supplementary Fig. 1A). The

TBS preparation contained similar sized aggregates
to the oligomer preparation (0.05–0.2 �m in diameter
and heights ranging from 2–15 nm) but also contained
larger aggregates (from 0.2–1 �m in diameter, and
their height ranged from 20–50 nm) (Supplementary
Fig. 2B, C). Assaying the TBS preparations revealed a
time dependent aggregation during the 16 h incubation
period (Fig. 2B). However, a dose-dependent reduction
in fluorescence units was observed in samples incu-
bated with latrepirdine, where at an A�:latrepirdine
molar ratio of 1:10, a 1.5 fold reduction was observed.
It was noted that at time 0 (t0, 0–10 min) an almost
2-fold reduction at the 1:10 ratio compared to A� only
was observed. Several possibilities could account for
this observation, including a direct interaction between
latrepirdine and A� thereby reducing the binding of
thioT at t0. This would result in a decrease in fluores-
cence at the endpoint (16 h). Alternatively, latrepirdine
may bind and displace thioT from binding to the
A� aggregates either through binding to latrepirdine
directly or by binding directly to the A� aggregates.

To obtain a better understanding of this phenomenon
and to determine if latrepirdine has similar effects when
added after A� aggregation has commenced, the pre-
vious time course experiment was repeated with mod-
ification. Latrepirdine or vehicle was added after A�
aggregation had been proceeding for 6 h (Fig. 2A). As
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A

B

C

Fig. 3. Addition of latrepirdine at 6 h post A� aggregation reduces Thioflavin T fluorescence but has minimal impact on formation of aggregates.
A) Fluorescent intensity of A�42, with latrepirdine addition after 6 h of A�42 aggregation, and thioT was measured every 10 min for 16 h
fluorescence increased in a steady fashion prior to the addition of latrepirdine when a sharp decrease in fluorescence was observed. SDS-PAGE
(B) and blue native PAGE (C) separation and western blot of 200 ng A� samples before aggregation (lanes 1–6), after 6 h of aggregation and
the addition of latrepirdine (lanes 7–12), and after a total of 20 h aggregation (lanes 13–18).
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shown before, fluorescence steadily increased prior to
the addition of latrepirdine resulting in a sharp decrease
in observed fluorescence. These results indicate that the
observed time course experiment data could be either,
a result of direct displacement of thioT binding or alter-
natively, latrepirdine reducing/influencing the rate of
aggregation. To determine if the observed changes in
aggregation detected by thioT are reflecting the pro-
gression of A� aggregation, an analysis of the formed
products on SDS-PAGE or BN-PAGE was performed.
A� preparations were incubated in the presence or
absence of latrepirdine (at a 1:1 or 1:10 molar ratio) for
0 h (t0), 6 h (t6), and 16 h (t16) and then subjected to the
gel electrophoresis under either denaturing conditions
SDS-PAGE or non-denaturing BN-PAGE (Fig. 3B, C).
At t0, lower molecular weight aggregates were par-
ticularly prominent in both SDS-PAGE (∼4 kDa) and
BN-PAGE (∼70 kDA). However, at t6 and t16, higher
molecular weight aggregates (40–160 kDa, 670 kDa)
were observed, being most prominent at t16. Latrepir-
dinedidnotappear to reduce (Fig.3B,C, lanes9–12and
15–16) the formation of these higher molecular weight
aggregates.

Latrepirdine modestly effects the formation of Aβ

aggregates

End point thioT analysis of A� oligomers (Fig. 2A)
supported that latrepirdine dose dependently reduced
oligomer formation. Similar results were also observed
when latrepirdine was added after A� oligomers had
been formed (Supplementary Fig. 2). Due to the
observed disparity in results described previously by
thioT analysis and gel electrophoresis, the formation of
A� oligomers in the presence or absence of latrepirdine
was analyzed using gel electrophoresis and AFM.

Western immunoblotting showed an increased
amount of the lower and higher molecular weight
species, most prominently observed at a 1:10 molar
ratio of A�:latrepirdine (Fig. 4A, B, lanes 7 and 8).
Collectively, these results suggest that latrepirdine may
induce either more A� oligomer formation or pro-
mote the formation of larger A� oligomer species. To
determine if the size and shape of the A� oligomers
was altered, A� oligomers or A�:latrepirdine mixtures
(1:10 molar ratio) were subjected to analysis using
AFM. In the A� oligomer preparation, the size of A�
aggregates was observed to range from 0.05–0.2 �m
in diameter with heights from 2–15 nm (Fig. 4C, i,
Supplementary Fig. 3A). Similar sized oligomers were
also observed in A�:latrepirdine mixture, however,
larger A� aggregates with diameters ranging from

0.2–0.5 �m and heights from 10–35 nm were also
present (Fig. 3C, ii, Supplementary Fig. 3B). These
results suggest that latrepirdine leads to the forma-
tion of larger aggregates. Overall, these results show
that latrepirdine had modest effects on the formation
of A� aggregates, which were only observed when
latrepirdine is in 10-fold excess. Treating cells at a 1:10
A�:latrepirdine molar ratio or treating with a control
containing the equivalent concentration of latrepir-
dine (300 �M) resulted in total cell death (data not
shown). These findings indicated that latrepirdine at
these supraphysiological doses was probably a major
contributing factor leading to the observed cell death.
Thus, the consequence of latrepirdine promoting the
formation of larger aggregates could not be evaluated.

DISCUSSION

The accumulation and aggregation of A� is a key
event in the pathogenesis of AD, and preventing the for-
mation or disrupting A� aggregation, thereby reducing
neuronal dysfunction in the brain has been proposed
as a therapeutic strategy. Inhibitors and modulators of
A� aggregation, including peptide, protein and small
molecular classes of natural and synthetic origin, have
been shown to modulate toxicity of A� in vitro and
in vivo [32, 33]. Latrepirdine is a small polycyclic
molecule belonging to a class of pro-neurogenic com-
pounds [13]. Findings from previous studies suggest
that the ability of latrepirdine to modulate protein
aggregation may explain its action in promoting the
clearance of protein aggregates and could contribute
to its neuroprotective mechanism of action [23, 25].
This study has addressed whether latrepirdine alters
A� oligomer formation and if these effects were related
to the amelioration of A� neurotoxicity in vitro.

The A� protein has a natural tendency to self assem-
ble into multimeric forms on the basis of cross-beta
sheets which resemble a common folding pathway
for amyloidogenic proteins. The thioT fluorescence
assay is a commonly used technique to monitor this
self-assembly/aggregation of amyloidogenic proteins
and is a rapid method to determine the efficacy of
inhibitors and modulators of aggregation. Molar ratios
of A�:latrepirdine ranging from 1:1–1:10, showed a
dose dependent reduction in thioT fluorescence in
both end point and time course assays. In the time-
course assay, however, the dose dependent reduction
was observed at the start of the assay (t0), before
fluorescence increased in a time dependent manner.
Similarly, a sharp reduction in fluorescence, followed
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by a steady increase, was observed when latrepir-
dine was added 6 h after A� commenced aggregation,
despite no observed reduction in aggregate formation
by SDS-PAGE or BN-PAGE. A possible explana-
tion for this observation is that latrepirdine displaces
or prevents thioT binding to A� aggregates either
through direct binding to thioT or by binding to the A�
aggregates. Support for this hypothesis comes from a
recent study that showed small molecular weight cyclic
compounds with similar structure to thioT reduce flu-
orescence in amyloid protein preparations [34]. This
study suggested that such compounds could actively
compete for the same binding site, thereby showing
decreased fluorescence in the absence of any apparent
structural change [34]. In conjunction with the find-
ings presented in this study, this indicates that more
attention to the interpretation of using fluorescent dyes
such as thioT in measuring protein aggregation kinetics
is required. As we found that thioT could not reliably
assess the effects of latrepirdine on A� aggregation, the
direct characterization of the formation of aggregates,
with particular focus on A� oligomers, was performed
by gel electrophoresis and AFM.

Oligomer and fibrillar species represent the major-
ity of the diverse structural assemblies formed by
amyloidogenic proteins like A�. There is increasing
evidence that supports a causative role of the solu-
ble oligomeric forms in neurodegeneration observed in
AD rather than the insoluble fibrillar A� counterparts
[7]. The focus of this study was therefore to assess
the effects of latrepirdine on oligomeric A� struc-
tures. Oligomers can be reliably generated in vitro, can
exist as smaller or higher molecular weight species,
less than 20 kDa and greater than 35 kDa respectively
(Supplementary Fig. 1A, B), and are 0.05–0.2 �m
in size (Supplementary Fig. 1C, D) [36]. The addi-
tion of latrepirdine during the generation of oligomers
appeared to modestly increase their formation, how-
ever only when added in 10-fold excess. This was
observed following immunoblotting where increased
amounts of lower and higher molecular weight species
were present. Furthermore, AFM analysis showed
that in addition to 0.2 �m oligomer aggregates, larger
0.5 �m aggregates were also present and these may
represent extensions of smaller oligomer species [36].
The significance of an effect of promoting oligomer
formation by latrepirdine remains unclear. At higher
molar ratio of A�:latrepirdine, latrepirdine could pro-
mote the extension of oligomers further to protofibrils
(0.5–1 �m) [6, 36] or fibrils (3-4 �m) [36]. Cyclic
small molecules have been shown previously to pro-
mote the formation of larger A� species resulting

in reduced toxicity [37], and this is consistent with
the proposed hypothesis that ‘amyloid’ structuring of
proteins is a detoxification strategy to mask the promis-
cuous surface of the oligomeric building block [35].

Although the use of higher molar ratios of
laterpirdine:A� could be investigated to provide further
insight into what type of aggregates are generated, the
findings of this study suggest that the neuroprotective
effect of latrepirdine may be independent of its ability
to modulate A� aggregation. Treating cells at a molar
ratio of 1:10 resulted in complete cell death, due to the
supraphysiological levels of latrepirdine required to
show changes in A� aggregation. However, assessment
of the neuronal cell death showed that there was a sig-
nificant reduction in LDH release at lower ratios (1:0.05
to 1:1) where influences on A� aggregation were not
evident. Zhang et al. showed that under non-stressed
conditions, latrepirdine can increase mitochondrial
membrane potential and cellular ATP levels in SH-
SY5Y cells, but not alter mitochondria DNA content.
This indicates that mitochondrial function is enhanced
[29]. In serum-starved cells, mitochondrial membrane
potential of latrepirdine treated cells was maintained
under conditions of increased intracellular calcium
concentrations, indicating that mitochondrial function
is preserved even under external stresses. Further evi-
dencesupporting theconcept that latrepirdine improves
mitochondrial function comes from recent reports that
have shown that latrepirdine can decrease calcium
retention capacity of rat brain mitochondria [38] and
protect against A� induced changes in mitochondria
morphology and respiration [39].

The findings of this study indicate that latrepirdine
can modulate A� oligomer formation, but this effect
appears to be independent of its ability to reduce the
resulting toxicity induced by oligomers. This finding is
furthersupportedbystudiesshowinglatrepirdinehasno
significanteffectonthe invitroassemblyofrecombinant
human�-synuclein[24].Thereductioninproteinaggre-
gateswith latrepirdine treatment reportedbyothers [22]
may be associated with its ability to promote clearance
of toxic protein aggregates via catabolic pathways, such
as autophagy [24, 26, 40], rather than its direct effects
on the amyloid structure. This, in combination with
evidence indicating that latrepirdine maintains mito-
chondrial function in the presence of external stresses,
may explain its neuroprotective activity.

Although, in the initial Russian clinical trials,
latrepirdine was shown to improve cognition in patients
with mild to moderate AD [15], recent phase III
clinical trials have shown that the drug is of limited
benefit to moderate-severe AD cases [16]. Differences
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in trial design, population bias (Russian phase II trial
versus multinational phase III trials) and targeting end-
stage AD patients, have all been proposed as reasons
for the different outcomes [19]. It is also important
to consider the mechanism by which latrepirdine can
target neurotoxicity induced by A� aggregation, par-
ticularly if more potent analogues are to be developed
for AD. This study has provided an investigation into
the effect of latrepirdine on A� aggregation, and the
methods used will be useful in assessing other amy-
loid disrupting compounds. However, the widely used
thioT fluorescence assay should be used with cau-
tion when investigating compounds thought to possess
aggregation altering capabilities.
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