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Abstract:  
This paper presents a new method for exon detection in DNA sequences based on multi-scale parametric spectral analysis. A 
forward-backward linear prediction (FBLP) with the singular value decomposition (SVD) algorithm FBLP-SVD is applied to 
the double-base curves (DB-curves) of a DNA sequence using a variable moving window sizes to estimate the signal spectrum 
at multiple scales. Simulations are done on short human genes in the range of 11bp to 2032bp and the results show that our 
proposed method out-performs the classical Fourier transform method. The multi-scale approach is shown to be more effective 
than using a single scale with a fixed window size. In addition, our method is flexible as it requires no training data. 
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Background: 
Genome sequences contain the genetic information of 
living organisms. This information, which is common to all 
life, is coded in the deoxyribonucleic acid (DNA) 
sequences. Understanding the codes will enable us to 
understand the life processes of a particular organism. As 
such, even with the genome sequence in hand, much work 
remains to be done to lay open the genetic secrets of a 
particular species. Decoding the meaning of the nucleotide 
characters A, T, C, and G is becoming even more pressing 
with the final release of the sequencing of the human 
genome. 
 
Gene identification is of great importance in the study of 
genomes, to determine which open reading frames (ORFs) 
in a given sequence are coding sequences for prokaryotic, 
and to determine the exons and introns, and the boundaries 
between them in a given gene for eukaryotic DNA 
sequences. There are a number of identification methods 
being used, either with training datasets, or without any 
database information. Genescan [1] use a semi-hidden 
Markov model, and FEX [2] use a linear discriminant 
function to determine genes, are examples of gene or exon 
finding algorithms based on database information. 
Examples of algorithms without database information are 
statistical correlation analysis [3], statistical regularity to 
detect coding regions [4], and Fourier analysis [5]. 
 
Among the various methods, the most prominent distinctive 
feature of coding and non-coding regions is the 3 base pairs 

(bp) periodicity or 1/3 frequency, which has been shown to 
be present in coding sequences [6]. The periodicity is 
caused by the coding biases in the translation of codons 
into amino acids. Eskesen et al. [7] has shown using 
simulated sequences that the DNA periodicity in coding 
region is determined by codon usage frequencies, which is 
lack in introns. This signature of 3bp periodicity in coding 
regions has been used and proved successful. Kotlar and 
Lavner [8] presented a method based on spectral rotation 
measure. Yan et al. [9] proposed the lengthen-shuffle 
Fourier transform. 
 
The Fourier transform analysis has been widely used for 
sequence processing [5, 9]. However, Fourier transform 
contains the problems of windowing or data truncation 
artifacts and spurious spectral peaks, and thus, the spectral 
obtained using the Fourier transform will exhibit the same 
problems. This problem has been studied extensively in 
digital signal and image processing, where autoregressive 
(AR) models are used to achieve a high spectral resolution. 
The AR model or linear prediction (LP) process is a 
relatively new approach to spectral analysis to overcome 
the limitation of Fourier methods. 
 
In this paper, we concentrate on the periodicity of 3bp to 
distinguish coding and non-coding regions. Our method is 
developed based on the AR model using forward-backward 
linear prediction (FBLP) and the singular value 
decomposition (SVD) (FBLP-SVD) algorithm [10]. We 
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apply a moving window analysis to the double-base curves 
(DB-curves) [11] representation of a DNA sequence to 
identify very short human genes. Since different window 
sizes for spectral analysis will induce different results [8], 
we have developed a multi-scale method [12] to solve the 
problem. Using this new approach, we are able to improve 
the results considerably. 
 
Methodology: 
We adopt the DB-curve mapping rule [11] which uses two 
bases out of the four DNA nucleotides. By ignoring the 
base order, there are six combinations: AC, AC, AG, TC, 
TG, and CG. The DB-curves are constructed by taking the 
cumulative occurrence of the different combinations using 
equation (1) and (2) (under supplementary material) and 
FBLP can be written as given in equation (3 under 
supplementary material). Then, spectral analysis using 
FBLP-SVD is done. 
 
There are several methods to estimate the LP coefficients, 
at = (a1, a2,…,aM)t. We adopt least squares (i.e. conditional 
maximum likelihood) estimates by solving equation (3) 
(see supplementary material), by using the pseudo inverse. 
 
A well-known deficiency of the AR method is the high bias 
if a low prediction order is used and the occurrence of 
spurious peaks if high prediction order is used. The 
problem is solved by Tufts and Kumaresan [10] with the 
use of singular value decomposition (SVD). The use of 
SVD in approximating a noisy version of a signal matrix 
which is constructed from a linear model will produce a 
better approximate of the signal matrix. The SVD based 
algorithm is able to increase the signal-to-noise-ratio (SNR) 
in the data.     
 
The power spectrum density is estimated by equation (4) 
(shown under supplementary material). The order selection 
criteria used in this paper is combined information criterion 
(CIC) [13], and the candidate order is in the range of N/3 to 
N/2. This range is chosen as Lang and McClellan [14] 
recommended that, for a fixed number of data samples, the 
number of coefficients should be between N/3 and N/2 for 
best frequency estimation. 
 
For a DNA sequence of length N, the numeric sequence 
using a DB-curve is given in equation (5) (supplementary 
material). The power spectrum as constructed using (4) can 
be given by |P(f)|2 as in equation (6) (shown in 
supplementary material). 
  
We employ a sliding window with step size of 1 along the 
DNA sequence to calculate the local spectrum density. As 
may already be obvious, different window sizes for spectral 
analysis will produce different results. A short analysis 
frame may detect short exons and introns, but causes more 
statistical fluctuations [8]. A larger window size may miss 
the short exons and introns, but cause fewer false negatives 
and false positives. Thus, we make use of multiple window 
sizes, with the aim of reinforcing the advantages of both 
short and long window sizes but overcome the 
disadvantages that are caused by them. It has been shown 
that different window sizes in spectral analysis are 

equivalent to different scales used in wavelet analysis [12]. 
We select the window size within the range of 60bp-360bp. 
In this paper, we chose four windows, which are 60bp, 
90bp, 180bp and 360bp. The Pratio combination of the 
windows, Pmulti is defined as in equation (7) (see 
supplementary material). 
 
Results and discussion: 
The analysis of the proposed algorithm is conducted on 
DNA sequences of human genome downloaded from the 
NCBI GenBank database. The selection of the genes used 
for the simulation is done based on the paradigm that the 
gene contains short exons. There are a total of 96 genes, 
with 692 exons. The lengths of the exons in the genes are 
within the range of 11bp to 2032bp.  
 
The Receiver Operating Characteristics (ROC) graphs and 
area under the ROC curve (AUC) are used as the evaluation 
criteria. The ROC is an important comparison method as it 
can be used to depict the tradeoff between hit rates and 
false alarm rates of the detector. An AUC value of 1.0 
indicates a perfect test and a score of 0.5 means a random 
classifier.  

 
Firstly, comparison is done on the proposed multi-scale 
analysis and fixed window spectral analysis. We labeled 
every nucleotide in the coding region as “positive” and all 
other regions as “negative”. The result is shown in the first 
row of Table 1 (under supplementary material). We can 
observe that the AUC for multi-scale approach is larger 
than all single scales. As we have mentioned before, short 
window size may detect the short exons whereas large 
window sizes cause fewer statistical fluctuations. The result 
of the analysis shows that the advantages of short and large 
analysis frames can be maintained while suppressing the 
disadvantages by the combination of different window 
sizes. 
 
An assessment is also done on the numerical representation 
of sequence. We compare the DB-curve representation 
which originated from Wu et al. [11], and the binary 
representation which is one of the most frequently used 
conversions. By comparing the first two rows of Table 1 
(see supplementary material), we conclude that the DB-
curve representation out-performs the classical binary 
conversion. Unlike the binary conversion which takes the 
conversion of the four nucleotides independently, the DB-
curve representation takes two bases at a time. In this way, 
a DB-curve can conserve the biological feature. For 
example, the DB-curve of AC will represent the 
distribution of purine/pyrimidine and strong/weak 
hydrogen bonds along the sequences. Table 2 (see 
supplementary material) shows the different biological 
meanings of the four nucleotides respectively. Jiang and 
Yan (unpublished data) have shown that the DB-curve 
enhances the spectral contents in coding regions using 
Fourier transform incorporating information of three codon 
strand and phase compensation.  
 
Another major point of this experiment is to show that the 
use of the FBLP-SVD algorithm improves the performance 
of the detection as compared to the Discrete Fourier 
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Transform (DFT). Evaluation is done on the proposed 
algorithm and the DFT analysis using both multi-scale and 
single scale spectral analysis. Improvement of results is 
noticed as the AUC of the FBLP-SVD method is larger 
than the AUC of the DFT in the multi-scale method and all 
single scales except at window size 360bp, in which there 
is a slight drop in the AUC. The drop is negligibly small 
compared to the increment. Figure 1(a) shows the ROC 
curve of the multi-scale method using FBLP-SVD (DB-
curve and binary representation) and DFT (DB-curve). It is 
clear that the multi-scale FBLP-SVD using DB-curve 
representation is able to distinguish more exons from non-
coding regions. 
 
An example of the spectrum generated by our method and 
the DFT is illustrated in Figure 1(b). Both methods use 
multi-scale method and the spectra are smoothed with a 
Gaussian window. There are 18 exons with length in the 
range of 90bp-389bp embedded in the non-coding region of 
length 80bp-2113bp. As can be seen from the upper graph, 
our method produces much smaller responses in non-
coding regions and the spectrum differences of the coding 

and non-coding regions are greater. The DFT produces a 
relatively less significant spectrum at the 1/3 frequency. 
Thus, it easier to identify the exons using FBLP-SVD 
compared to DFT. 
 
We then try to separate the coding and non-coding region. 
To determine the threshold value that discriminates the 
coding regions from the non-coding regions, the cumulative 
distribution function is plotted (not shown). From the 
graph, the intersection of the two curves, which is 0.06214, 
is selected as the threshold. We obtain a sensitivity of 
0.9090 and specificity of 0.6041. 
 
An example of the splicing result showing five exons in 
gene X62654 is presented in Figure 1(c). The exons are 
seven exons of length 77bp-189bp which are embedded in 
the non-coding regions of variable length in the range of 
94bp-935bp. The multi-scale FBLP-SVD using DB-curves 
is able to produce high Pratio value at the 1/3 frequency for 
all the short exons and produce low Pratio value for non-
coding regions. In other words, it is able to discriminate the 
exon regions from the non-coding regions precisely. 

 

 
Figure 1: (a) ROC curves for the multiple-size moving window using FBLP-SVD using the DB-curve (solid line), FBLP-SVD 
using binary representation (dotted line) and the DFT using the DB-curves (dashed line). (b) Comparison of the FBLP-SVD and the 
DFT algorithm of gene Z20656. The length of the exons shown is in the range of 90bp-389bp embedded in non-coding regions of 
length in the range of 80bp-2113bp. The actual exon locations are marked with straight vertical lines. Upper diagram is the 
spectrum generated using FBLP-SVD whereas the lower diagram is generated from the DFT. (c) Graph of Pratio along the gene 
X62654. The exons are 77bp in length starting at position 1316, 189bp at position 2328, 75bp at position 2701, 96bp at position 
2870, 141bp at position 3403, 83bp at position 3768, and 153bp at position 4038. The dotted line represents the original Pratio signal 
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along the gene. The solid line shows the Gaussian-smoothed signal. The actual exon locations are marked with straight vertical 
lines. The horizontal dashed line is the threshold value of 0.06214. 
 
Conclusion: 
We have proposed the multi-scale FBLP-SVD algorithm 
for exon detection in DNA sequences and carried out 
comparisons of multi-scale analysis with single scale 
methods, assessment of DB-curve representation and 
binary conversion, and evaluation of the FBLP-SVD 
algorithm and the DFT. The results have shown that the 
multi-scale FBLP-SVD algorithm with the DB-curve 
representation has a superior performance. Spectral 
analysis for the 3bp periodicity for exon detection is mostly 
based on Fourier transform in conventional methods. Our 
simulation results show that autoregressive model 
outperforms the Fourier transform. Besides, the majority of 
the methods proposed by other researchers are based on a 
single fixed window, or a single scale. The multi-scale 
approach is similar to wavelet analysis and offers a 
powerful means for detection of spectral components 
embedded in noise. In addition, we focus on the 
comparison of different periodicity estimation methods 
using spectral analysis algorithms without incorporating 
other criteria. Our method is based on the 3bp periodicity 
which is independent of any training datasets or database 
information. Thus it is more flexible and can be applied to 
DNA sequences obtained from different sources. 
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Supplementary material 
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Instead of taking the cumulative xDB, we take xDB. Therefore, a DNA sequence is decomposed into six numerical serie
consisting of 1 or 1.  
 
The FBLP can be written as:   
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where “*” denotes a complex conjugate.  
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where ω is the frequency, T is the sampling interval, 2
eσ is the variance of the prediction error, M is the order of pre

and ak are the LP coefficients. 
  

x(n)  =  [xAT(n) xAC(n) xAG(n) xTC(n) xTG(n) xCG(n)]T   
 

→ (5) 

The power spectrum as constructed using (4) can be given by   
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where f is the frequency index. PDB(f) are the power spectra of xDB(n) respectively, where DB∈{AT,AC,AG,TC,TG,C
wDB is the weight contribution from the six sequences. The weighted summation can be obtained by computing the ei
decomposition of the six DB-curves and taking the largest eigenvalue. 
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where W is the number of different window sizes or the number of scales.   
 
 
 
 
 
 
 
 
 



Bioinformation by Biomedical Informatics Publishing Group                           open access 
www.bioinformation.net                    Prediction Model  
___________________________________________________________________________ 

ISSN 0973-2063 
Bioinformation 2(7): 273-278 (2008) 

Bioinformation, an open access forum 
© 2008 Biomedical Informatics Publishing Group 

 

278

 
Tables: 
 
   Multiple-size  

moving window 
Window size 60 Window size 90 Window size 180 Window size 360

FBLP-SVD (DB-curve) 0.8387 0.7888 0.8160 0.8374 0.8298 
FBLP-SVD 
representation) 0.8154 0.7729 0.7934 0.8213 0.8159 

DFT (DB-curve) 0.8258 0.7754 0.8023 0.8265 0.8319 
Table 1: Comparison of AUC of multiple-size moving window and fixed window analysis of the proposed algorithm using DB-
curve and binary representation, and DFT using the DB-curve. 
 
     Nucleotides                              Biological meaning 
Adenine (A) Purine Weak hydrogen bond Amino-type 
Cytosine (C) Pyrimidine Strong hydrogen bond Amino-type 
Guanine (G) Purine Strong hydrogen bond Keto-type 
Thymine (T) Pyrimidine Weak hydrogen bond Keto-type 
Table 2: Biological meaning of the different nucleotides is given. 


