Homologs of the *Acinetobacter baumannii* AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems

Karl A. Hassan,a Qi Liu,a Peter J. F. Henderson,b Ian T. Paulsena

Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom

ABSTRACT Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (*Acinetobacter* chlorhexidine efflux) protein from *Acinetobacter baumannii* that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavin. We conducted fluorimetric transport assays using the AceI homolog from *Vibrio paraaerolyticus* and confirmed that resistance to both proflavine and acriflavin was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins.

IMPORTANCE Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the *Acinetobacter baumannii* AceI transporter are a new class of multidrug efflux systems which are very common in *Proteobacteria*: the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins.

Multidrug efflux is a ubiquitous mechanism of drug resistance in bacterial pathogens that is mediated by integral membrane transport proteins. These proteins are typically very promiscuous, recognizing a range of antimicrobial substrates that differ in both structure and valency. To date, five distinct families of transport proteins have been shown to include multidrug efflux systems: the major facilitator superfamily, the resistance/nodulation/division superfamily, the ATP-binding cassette superfamily, the multidrug and toxic compound extrusion family, and the small multidrug resistance family.

Recently, we identified the *aceI* (*Acinetobacter* chlorhexidine efflux) gene in *Acinetobacter baumannii*, which is involved in adaptive resistance to the widely used biocide chlorhexidine (1). This gene was overexpressed more than 10-fold in response to a subinhibitory shock of chlorhexidine in *A. baumannii* ATCC 17978. The *aceI* gene encodes a membrane protein that is approximately 150 amino acid residues in length and contains two tandem bacterial transmembrane pair (BTP; Pfam accession number PF05232) domains (2). Heterologous expression of *aceI* increased *Escherichia coli* resistance to chlorhexidine (1) and, conversely, deletion of *aceI* from the *A. baumannii* genome increased its susceptibility to chlorhexidine (3). The AceI protein was shown to interact directly with chlorhexidine and to mediate its efflux via an energy-dependent mechanism (1). However, resistance to other antimicrobial compounds was not observed (1).

Genes that encode BTP domain proteins homologous to *aceI* are carried by diverse bacterial species but are particularly common among proteobacterial lineages. Similar to *A. baumannii*, genes encoding BTP domain proteins were upregulated in the human pathogens *Pseudomonas aeruginosa* PAO1 and *Burkholderia cenocepacia* J2315 in response to chlorhexidine and were able to mediate resistance to this biocide (1). Furthermore, related BTP domain protein genes from the soil bacterium *Acinetobacter baylyi* ADP1 and the plant commensal bacterium *Pseudomonas protegens* Pf-5 were also shown to mediate resistance to chlorhexidine when expressed in *E. coli* (1). Deletion of this gene from *A. baylyi* ADP1 increased its susceptibility to chlorhexidine (1).

In addition to *aceI*, the *A. baumannii* genome harbors a second gene that encodes a BTP family protein, *A1S_1503*, that does not confer chlorhexidine resistance and whose expression is not in-

Received 15 October 2014 Accepted 23 December 2014 Published 10 February 2015

Editor Karen Bush, Indiana University Bloomington

Copyright © 2015 Hassan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Ian Paulsen, ian.paulsen@mq.edu.au, or Karl A. Hassan, karl.hassan@mq.edu.au.
duced by chlorhexidine. Similarly, *P. protegens* harbors a second gene encoding a BTP domain protein that appears to be nonfunctional with respect to chlorhexidine resistance (1), and the *P. aeruginosa* and *B. cenocepacia* genomes carry one or two BTP domain protein genes that are not induced by chlorhexidine (4, 5).

Here, we sought to identify alternative drug substrates for BTP domain proteins. We demonstrate that, in addition to chlorhexidine, many BTP domain proteins are able to mediate resistance to other biocides, as well as fluorescent dyes. The protein from *Vibrio parahaemolyticus* VP1155 provided particularly strong resistance to biocides and dyes and mediated rapid transport of acriflavine and proflavine. These results indicate that BTP domain proteins represent a new family of transport proteins that includes multidrug efflux systems, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family.

BTP protein gene cloning and expression. At the time of writing, the Pfam database (version 27.0) listed close to 800 proteins that contain BTP domains from more than 600 bacterial species (2). The majority (95%) of these proteins were predicted to have the same tandem BTP domain architecture as AceI and were encoded by *Proteobacteria*, particularly the gamma, beta, and alpha subdivisions (although this may be biased by the species for which genome sequence data are available). In addition to *Proteobacteria*, the genomes of several *Veillonella* and *Micrococcus* species (*Firmicutes* and *Actinobacteria*, respectively) also carried BTP domain protein genes. We have not, however, detected these genes in the genomes of archaeal or eukaryotic organisms.

In this study, we examined the drug resistance/transport capabilities of 24 BTP domain proteins, including AceI. These proteins were selected to encompass the full spectrum of currently sampled phylogenetic diversity within this group (Fig. 1) and included 18 gammaproteobacterial proteins, 3 betaproteobacterial proteins, and 1 representative protein from each of *Alphaproteobacteria*, *Firmicutes*, and *Actinobacteria* (Table 1). Seven of the genes encoding these proteins were previously cloned into the *E. coli* pT7Q18 expression vector via conventional methods (1). The remaining 17 were synthetically designed *E. coli* codon-optimized sequences and were synthesized in single gBlock gene fragments (Integrated DNA Technologies) and then cloned into the pT7Q18 plasmid vector (6). With the exception of Vpar_0264, ROS217_23162 and MHA_0890, the proteins under investigation were expressed at levels detectable in Western blot assays of whole-cell lysates (see Fig. S1 in the supplemental material). This level of expression success (87.5%) is in line with our previous experiences using this expression system for the heterologous production of transport systems (7–9).

Chlorhexidine resistance mediated by AceI homologs. Previously, we demonstrated that BTP domain proteins homologous to the *A. baumannii* AceI protein from *A. baylyi* ADP1 (ACIAD1978), *P. aeruginosa* PA14 (PA14_26850), *P. protegens*
BTP domain proteins are multidrug efflux systems. To explore the possibility that BTP domain proteins represent a new family of multidrug efflux transporters, we tested their capacities to confer resistance to a range of additional antimicrobial compounds in MIC analyses. These compounds included: the biocides dequalinium, tetracyclolysphosphonium, and benzalkonium, the antibiotics tetracycline and chloramphenicol, and a number of fluorescent antimicrobial dyes that are common substrates of multidrug efflux systems, such as proflavine, acriflavine, ethidium, Hoechst 33342, pyronin Y, acridine yellow, and 4',6-diamidino-2-phenylindole (Table 1).

Resistance to a variety of antimicrobials was common, particularly among the Pseudomonas and betaproteobacterial genes (Table 1). Six BTP domain protein genes conferred reproducible resistance to the biocide benzalkonium. Additionally, two Pseudomonas proteins, PA14_26850 and PFL_4585, mediated resistance in this mutant strain. The GenBank protein ID is given for the Tepidiphilus margaritifer DSM 15129 protein.

Of the 24 cloned BTP family genes, we saw reproducible increases in resistance to the greatest number of compounds, with at least 4-fold increases in resistance to chlorhexidine, benzalkonium, proflavine, and acriflavine. To determine whether resistance mediated by these proteins was dependent on a TolC-like protein, we conducted Biolog OmniLog Phenotype microarray (PM) experiments (11). The resistance levels of each strain were compared to those of E. coli BL21 carrying pTTQ18-VP1155 in a TolC-inactivated background (10). Both of these proteins mediated resistance in this mutant strain.

To explore further the substrate recognition profile of the VP1155 protein, we conducted Biolog OmniLog Phenotype microarray (PM) experiments (11). The resistance levels of E. coli BL21 carrying pTTQ18-VP1155 were compared to those of E. coli BL21 carrying pTTQ18 for 240 different antimicrobials in the BL21 carrying pTTQ18-VP1155 were compared to those of E. coli BL21 carrying pTTQ18 for 240 different antimicrobials in the
PM11-20 plate series, as previously described (1, 11). These tests confirmed that VP1155 provides resistance to the substrates identified by conventional MIC assays: chlorhexidine, proflavine, and acriflavine (see Fig. S2 in the supplemental material; benzalkonium is not included in the PM11-20 panel of compounds). Furthermore, the Biolog PM tests indicated that VP1155 also provides resistance to 9-aminoacridine, dimethoebromide, 3,5-diaminopyrimidine, and plumbagin (see Fig. S2).

Fluorimetric transport assays demonstrate efflux mediated by VP1155. The observations of resistance to the DNA-intercalating antimicrobial dyes proflavine and acriflavine from several of the BTP domain protein genes presented the opportunity to assay directly the efflux of these substrates in real-time fluorimetric transport assays. We applied these assays to cells expressing VP1155, exploiting the capacity of this protein to mediate resistance to both dyes. The assays were conducted in the *E. coli* triple deletion mutant strain BW25113 (ΔacrB ΔemrE ΔmdfA::kan), which is defective in the three major *E. coli* multidrug efflux system genes (12) and provides a sensitive background for these assays. Cells carrying the pTTOQ18-VP1155 expression plasmid were assayed both pre- and postinduction of VP1155 expression by using 0.2 mM IPTG (see Fig. S3 in the supplemental material). Cells carrying “empty” pTTOQ18 treated with IPTG were also included as a negative control. The transport assays were conducted essentially as described previously (13), except that cells were grown in glycerol-supplemented medium and reenergized by using glycerol to initiate transport from substrate-loaded cells.

The fluorescence intensity of both proflavine and acriflavine is lower when intercalated into DNA, so efflux from the cell was characterized by an increase in fluorescence over time. In our transport experiments we observed a rapid increase in fluorescence in cells that expressed the VP1155 protein but not in control cells lacking this protein (Fig. 2; see also Fig. S3 in the supplemental material). These results provide additional evidence that efflux is the mechanism of resistance operating in this group of proteins.

Conclusions. In this study, we examined a large panel of genes encoding proteins related to the AceI chlorhexidine efflux system for their ability to confer resistance to a set of 12 different biocides, antibiotics, and antimicrobial dyes. To facilitate this broad survey of phylogenetically diverse proteins, we adopted a synthetic cloning approach; the majority of genes were codon optimized for expression in *E. coli* and chemically synthesized for cloning into our expression system. Of the 24 transport proteins studied, 21 were expressed at levels detectable in Western blot assays of whole-cell lysates, and 18 conferred resistance to one or more antimicrobial compounds.

Our results demonstrate that this group of proteins is a new family of bacterial multidrug efflux systems, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family. The PACE family is only the sixth family of bacterial multidrug efflux systems to have been described and the first new family for more than 15 years. Multidrug efflux systems encoded by nosocomial pathogens are particularly problematic. Antimicrobial pressures selecting for increased expression of multidrug exporters can promote resistance to not only the selecting compound but also to a swath of otherwise-effective compounds.

Using a radiolabeled substrate, we previously demonstrated that the AceI protein within the PACE family is able to mediate the active efflux of chlorhexidine. In this work, we have identified fluorimetric substrates for several members of the PACE family that facilitate the development of rapid fluorimetric efflux assays. These assays will be highly valuable in future studies to define the molecular transport mechanism operating in members of this family, including the mode of energization, which is likely to involve an electrochemical gradient.

Notably, PACE family proteins are encoded in the core genomes of many proteobacterial species that are separated by hundreds of millions of years of evolution. Given that the substrates we have now defined for these efflux systems—chlorhexidine, de-
Qualinimum, benzalkonium, proflavine, and acriflavine—are synthetic biocides that have only been widely used within the last century, it seems unlikely that these compounds are the physiological substrates of these transporters. Nonetheless, as with other multidrug efflux systems, the substrate promiscuity of PACE efflux systems is likely to have enhanced the success of proteobacterial pathogens in clinical settings.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01982-14/-/DCSupplemental.

Figure S1, TIF file, 1.4 MB.
Figure S2, TIF file, 1.8 MB.
Figure S3, TIF file, 0.6 MB.

ACKNOWLEDGMENTS

This work was supported by a project grant from the Australian National Health and Medical Research Council (1060895) to I.T.P., K.A.H., and P.J.F.H. and the award of a Leverhulme Trust emeritus fellowship to P.J.F.H.

We thank Shimon Schuldiner from the Hebrew University of Jerusalem for the gift of *E. coli* strain BW25113 ΔacrB ΔemrE ΔmdfA::kan.

REFERENCES

JOURNAL SEARCH

Search Terms: 2150-7511

Total journals found: 1

The following title(s) matched your request:

Journals 1-1 (of 1)

MBIO
Bimonthly ISSN: 2150-7511
AMER SOC MICROBIOLOGY, 1752 N ST NW, WASHINGTON, USA, DC, 20036-2904

Coverage
Science Citation Index Expanded
BIOSIS Previews

Journals 1-1 (of 1)