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Characterizing flat-top laser beams
using standard beam parameters

S. Saghafi, M.J. Withford, and Z. Ghoranneviss

Abstract: We examine the correspondence between various models describing flat-top
laser beam profiles using two standard parameters; namely, the M2 factor and the kurtosis
parameter. Numerical expressions for M2, based on the second moment of the beam
irradiance distribution in the near and far fields and for the kurtosis parameter, k, based
on the fourth moment at the near field, are obtained. Plots of k in the near field versus M2

demonstrate the similarities between the different analytical models used to describe flat-top
profiles. Using the Padé approximation, a relationship between k and M2, a new reference
formula, is derived that predicts the values of M2 to within less than a percent for these
flattened beams. This method is then extended to define numerical expressions relating the
beam parameters (i.e., M2 and k) and the parameters describing the beam characteristic in
each analytical model (model parameters). The results obtained using the Padé method are
used to describe the output beam profiles for a high power copper vapour laser fitted with an
unstable resonator.

PACS Nos.: 42.55.–f, 42.55.Lt, 42.60.–v

Résumé : Nous examinons la correspondance entre différents modèles qui décrivent les
profiles de faisceaux laser aplatis en utilisant deux paramètres, nommément le facteur M2

et le paramètre kurtosis. Nous obtenons des expressions numériques pour M2 basées sur
le second moment de la distribution d’irradiance du faisceau dans les champs proche et
lointain et pour un paramètre kurtosis k basé sur le quatriéme moment du champ proche. Des
graphiquies de k en champ proche versus M2 démontrent les similarités entre les différents
modèles analytiques utilisés pour décrire les profiles aplatis. À l’aide de l’approximation
de Padé, nous obtenons une relation entre k et M2, ce qui constitue une nouvelle formule
de référence et qui prédit les valeurs de M2 à moins d’un pourcent pour ces faisceaux
aplatis. La méthode est alors généralisée pour definir des expressions numériques reliant
les paramètres du faisceau (M2 et k) avec les paramètres décrivant les caractéristiques du
faisceau dans chaque modèle analytique (paramètres du modèle). Les résultats obtenus avec
l’approximation de Padé sont utilisés pour décrire les profiles des faisceau de sortie d’un
laser de haute puissance à vapeur de cuivre doté d’un résonateur instable.
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Fig. 1. Flat-top beams in the super-Gaussian model for various beam order.

1. Introduction

The beam propagation factorM2 is an industry standard defining laser beam quality [1–5]. Kurtosis,
k, is a shape parameter, which is also often used for characterizing laser beams [6–8]. In particular,
k describes the flatness of the irradiance distribution compared with normal Gaussian beams and is
independent of the beam radius and divergence. These two parameters are typically used independently
to quantify beam quality and flatness but it is shown here that, for a range of standard “flat-top” beams,
these two factors are dependent in practice.

For many laser applications, a beam with a flat-top intensity profile (i.e., uniform irradiance over
a defined cross section) is highly desired [9]. As a result, many lasers are designed to produce flat-top
beams and various beam-processing techniques have been developed to obtain uniform (flat-top) beams
from Gaussian and other nonuniform laser beams [10–13]. Consequently, it is important to develop
theoretical models to characterize the propagation through space of flat-top beams. There are three
main models, all based on the paraxial approximation, which can predict the beam diameter, intensity
profile, and phase at any point along the propagation axis for beams with uniform irradiance distribution
[12–15].

The first model proposed for flattened beams is the so-called super-Gaussian (SG) model [12] in
which the model parameter n describes a flattened beam at the beam waist (z = 0). For example, the SG
model describes a Gaussian beam for n = 1 and a flat-top beam as n → ∞ (Fig. 1). The propagation of
a flat-top beam in free space (z �= 0) cannot be analysed using the SG model in closed form. However,
a mathematical analysis was proposed by Palma et al. that describes the propagation of SG beams in
free space under the paraxial approximation in terms of the Laguerre–Gauss beams [13].

In 1994, Gori [14] introduced an alternative model for describing flat-top beams, the so-called
flattened Gaussian beam (referred to as FGB1 in this paper), which can change from a general Gaussian
to a flat-top beam through a parameter N called the beam order. In essence, FGB1 is a finite sum of N
Laguerre–Gaussian modes that are the solutions of the paraxial wave equation, thus, the model can be
easily used to describe beam propagation [14]. For example, Fig. 2 shows a flat-top beam created using
the FGB1 model with only five modes.

The third model developed by Sheppard et al. [15] is an alternative way of describing flat-top beam
profiles (referred to as FGB2 in the remainder of this paper) in which the beam is defined at the waist
to be the two-dimensional Fourier transform of the product of an Airy disc and a Gaussian. As the Airy
disc propagates it produces an annular beam with a very small angle of divergence. The convolution of
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Fig. 2. A flat-top beam created using the FGB1 model when N = 5 (i.e.,
N∑
p=0

ψ(r)).

this annular beam and a Gaussian, produces flat-top beam profiles. In this case, the model parameter a
determines the relative scaling of the Airy disc and the Gaussian (which adjusts the strength of the outer
rings of the beam). It was demonstrated that this Fourier transform could be expressed as an infinite
sum of the Laguerre–Gaussian modes.

Each of these three models has its limitations. In the SG model, the beam order (model parameter)
is an integer and the irradiance profile produced by the model changes rapidly from an ideal Gaussian
towards a flat-top distribution. Additionally, it cannot cover all types of uniform distributions, as when
the intensity distribution of the flat-top beam most properly lies between two mode orders. In the
FGB1 model, the beam order is also an integer. However, the changes in the irradiance beam profiles
produced by the model parameterN is not as fast as the SG model parameter n. In the FGB2 model, the
upper limit of the summation of modes is infinity, which creates mathematical difficulties in analytical
characterizations of the beam.

However, each of the models has strengths and may be preferred in particular situations. To use
any of these models, the model parameters n, N , and a must be defined. In this paper, a mathematical
method called the Padé approximation is employed to establish the relationship between the beam
parameters, M2 and k, for flat-top beams. Then, the relationship between the beam parameters and
the model parameters in each of the three analytical models is presented. These formulae enable us to
switch from one model to the other depending on the application.

Finally, the validity of these results is tested against beam profile measurements of a high-power
copper vapour laser with an unstable resonator.

2. The beam propagation factor (M2) and kurtosis parameter (k)

Using the intensity moment formalism method,M2 and k can be defined in cylindrical or rectangular
coordinates. In this paper, we consider only rectangular symmetry (2D) but the results can be readily
transposed to the cylindrical case (3D). M2 describes the relationship between the beam width in the
near and far fields and is invariant through propagation. If the complex field amplitude at the waist
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(z = 0) of a symmetrical beam is written as ψ(x, 0), the beam propagation factor, using far-field or
near-field distribution, can be defined by [16]

M2
x =

√√√√(∣∣ψ(x, 0)
∣∣2x2dx

)(∞∫
0

∣∣ dψ(x,0)
dx

∣∣dx
)

∞∫
0

∣∣ψ(x, 0)
∣∣2dx

(1)

For the sake of simplicity, we just consider the x coordinate
(
M2
x = M2

)
.

Kurtosis is defined in terms of the second and fourth moments of the normalized field

k =

(∞∫
0

∣∣ψ(x, z)∣∣2x4dx

)(∞∫
0

∣∣ψ(x, z)∣∣2dx

)
(∞∫

0

∣∣ψ(x, z)∣∣2x2dx

) (2)

In the following section, a detailed analysis of these two standard parameters (1) and (2) using the
three different analytical models describing flat-top beam profiles is given.

3. Analysis of M2 and k using the three flat-top models

3.1. Super-Gaussian

A commonly used model for flattened beams is called the super-Gaussian model [12] which takes
the form

ψ(x, 0) = A exp

[
−
(
x

w0

)2n
]

(3)

where the beam order n ≥ 1. Equation (3) describes a Gaussian beam for n = 1, however, as n increases
this expression describes increasingly flatter beam profiles. Exact values of M2 and k (near-field) for
the SG model can be derived by substituting (3) into (1) and (2) considering eq. (1.3.478) in the section
”Definite Integrals of Elementary Function“ of ref. 17

∞∫
0

xv−1 exp
(−µxp) dx = 1

p
µ−v/p�

(
v

p

)
(4)

where the gamma function, �(z), is defined by the integral �(z) =
∞∫
0
tz−1et dt

k =
�
(

5
2n

)
�
( 1

2n

)
[
�
( 3

2n

)]2 and M2 = 2n

√
�
( 3

2n

)
�
( 4n−1

2n

)
�
( 1

2n

) (5)

M2 and k for beams described by the SG model, are plotted against n in Fig. 3. It can be seen that
for a perfect Gaussian (n = 1), M2, and k equal 1 and 3, respectively, and by increasing n these two
parameters change until they approach asymptotic values of ∞ and 1.8, respectively.
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Fig. 3. The values of the kurtosis parameter and the beam propagation factor versus number of modes for
the super-Gaussian beam.

The analytical expression for the kurtosis parameter in the far field (z → ∞) is given by

kfar field =

(∞∫
0

∣∣∣ψ̃(ρ)∣∣∣2 ρ4 dρ

)(∞∫
0

∣∣∣ψ̃(ρ)∣∣∣2 dρ

)
(∞∫

0

∣∣∣ψ̃(ρ)∣∣∣2 ρ2 dρ

)2 (6)

where the complex field amplitude at the waist of a symmetrical beam in the far field is written asψ(r).
Using the general form of even moments

〈ρ2n〉 =

(∞∫
0

∣∣∣ψ̃(ρ)∣∣∣2 ρ2n dρ

)
(∞∫

0

∣∣∣ψ̃(ρ)∣∣∣2 dρ

) =

(∞∫
0

∣∣ψ(n)x∣∣2 dx

)
(∞∫

0

∣∣ψ(x)∣∣2 dx

) (7)

where ψ(n)(x) is the nth derivative of ψ(x).

The kurtosis parameter for the SG model in the far field, using (4), is described by

kfar field = (1 − 4n)2 �
(
2 − 3

2n

)
�
( 1

2n − 2
)

[
�
(− 1

2n

)]2 (8)
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3.2. Gori model; FGB1
In the FGB1 model a flat-top beam is described at the waist (z = 0) by

ψ(x, 0) = A

N∑
p=0

CpLp

(
2Nr2

w2
0

)
exp

[
−N
w2

0

r2

]

= A

N∑
p=0

exp

(
−Nx

2

w2
0

) (Nx2

w2
0

)p
p! , N = 1, 2, 3, . . . (9)

where A is a scale constant, w0 the beam spot size, Cp = (−1)p
N∑
m=p

(
m

p

)
1

2m , and N is the model

parameter that in this case describes the beam order that controls the flatness of the irradiance distribution.
The above equation can be recognized as a Chi-square probability function and Poisson distribution
[17] that is related to the incomplete Gamma function

e−χ2/2

ν
2 −1∑
j=0

(
χ2

2

)j
j ! = Q

(
χ2 |v

)
=
�
(
ν
2 ,

χ2

2

)
�
(
ν
2

) (10)

By using (10), the beam distribution at the waist can be written as an incomplete Gamma function

� (x, 0) = A0

�
(
N + 1, Nx

2

2

)
� (N + 1)

(11)

Using eq. (6.455.1) in the section ”Incomplete Gamma Function Integrals“ of ref. 17
∞∫

0

xµ−1 exp (−βx) � (ν, ax) dx = aν� (µ+ ν)

µ (α + β)µ+ν F
(

1, µ+ ν;µ+ 1; β

α + β

)
(12)

M2 and k (near field) can be defined as

M2 = 2.0

√
�
(
2N + 7

2

) (
2N + 1

2

)!F (1, 2N + 7
2 ;N + 7

2 ; 1
2

)/(
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2

)
√
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(
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2
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(

1, 2N + 5
2 ;N + 5

2 ; 1
2

)/ (
N + 3

2

) (13)

and

k = 9

5

�
(
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2

)
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(
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2

) (
N + 5

2

)
2F
(
1, 2N + 9
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2 ; 1

2
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(
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)]2 (14)

M2 and k for the FGB1 model of order N in the near field are plotted in Fig. 4. Similarly to the SG
case, for a perfect Gaussian M2 and k equal 1 and 3, respectively. By increasing the beam order these
two parameters change until they reach asymptotic values of infinity and 1.8. respectively. However,
the rates of these changes are not as fast as those of the SG model. The kurtosis parameter for the FGB1
model in the far field, is derived as

kfar field =
(8N + 3) �

(
2N + 5

2

)
F
(

1, 2N + 5
2 ;N + 5

2 ; 1
2

)
(2N + 3) (4N + 1)

(
2N + 1

2

)! (15)

The propagation of a flat-top beam described by the FGB1 model is discussed in details in refs. 18
and 19.
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Fig. 4. The values of the kurtosis parameter and the beam propagation factor versus number of modes for
the FGB1.

3.3. Sheppard et al. model; FGB2

The FGB2 model is defined at the waist to be the two-dimensional Fourier transform of the product
of an Airy disc and a Gaussian. This was shown to give [15]

ψ(x, 0) =
∞∑
p=0

Ap(a)Lp

(
γ 2x2

)
exp

[−γ 2x2

2

]
(16)

with γ = ka sin α where k = 2π/λ, α is the semi-angle of divergence (assumed to be small so that the
paraxial approximation holds), and a is this model parameter. Finally, Ap(a)is given by

Ap(a) = exp

(
− 1

4a2

) ∞∑
q=p+1

4a2

q!
(

1

2a

)2q

= 4a2
[

1 − Fp

(
1

2a

)]
(17)

where

Fp(x) = exp
(
−x2

) p∑
q=0

x2q

q! (18)

Fp(x) is exactly the flattened Gaussian profile introduced by Gori [14] but here it appears in the amplitude
of the various Laguerre–Gaussian modes.

The numerical values of M2 and knear field for the field described by (16) are plotted in Fig. 5 for
different values of 1/a.

The analytical expressions derived forM2 and k depend on the model parameters (e.g., n,N , and a
in SG, FGB1, and FGB2, respectively). The development of a parametric formula that is independent
of the model parameter in each model and describes the relationship between the beam parameters (M2

and k) is the subject of the following sections. To calculate M2 and k, a mathematical method called
the Padé approximation is employed.
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Fig. 5. The values of the kurtosis parameter and the beam propagation factor versus number of modes for
the FGB2.

4. Padé approximants

When the value of a function such as ψ(x) is known at a set of points, and we do not know the
analytical expression for this function, there are methods that help us to estimate the value of ψ(x) at
any arbitrary point. There is a related class of approximation theorem involving the interpolation and
extrapolation method fitting a smooth curve through a set of data points by an approximating function.
Thus, the value of ψ(x) at any arbitrary point can be defined by deriving a parametric expression.

The most common approximations for a function are polynomials, however, the functions considered
in the current paper cannot be approximated by polynomials and alternative methods must be chosen.
One of these methods of approximation is the Padé approximation.

Assuming a field described by a power series

ψ(x) =
∑

cmx
m (19)

the Padé approximant to ψ(x) is a rational function (the ratio of polynomials) described by

P(x) ≡

N∑
k=0

ekx
k

1 +
M∑
k=1

bkxk

(20)

Because these functions only use the elementary arithmetic operations, they are very easy to evaluate
numerically. The polynomial in the denominator allows one to approximate functions that have rational
singularities; for this reason it is frequently useful in numerical work to approximate a given function
by a rational function.

Ifψ(x) is defined as a series, then the first and second terms can be kept while the higher order terms
are replaced by the term derived using the Padé approximation. This may be done by multiplying ψ(x)
by the denominator of (20), and equating all powers of x that have either c’s or b’s in their coefficients.
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Fig. 6. The parametrical expressions and analytical data for the SG, FGB1, and FGB2 models.

5. Relationship between M2 and k for three different models
describing flat-top beams

In practice, there are instruments that measure the beam propagation factor for which the beam
widths in the near field (z = 0) and the far field are usually required. By comparison, the kurtosis factor
for different beam profiles is usually determined individually and there are few instruments capable of
measuring k. However, both these beam parameters are relevant to laser beam characterization. In the
following sections, we will demonstrate that there is a global relationship between the beam parameters
for all flat-top beams and the model parameters of the various models describing flat-top beams.

Different methods for determining the beam propagation factor and the kurtosis parameter have
been developed and discussed in detail elsewhere [2–8]. However, the analytical expressions derived
for these parameters in the previous section depend on the model parameter such as n, N , and a. Here,
instead of considering the beam propagation factor and kurtosis parameter individually, the changes of
k with respect to M2 are considered.

5.1. The correspondence between M2 and k for the SG model
The changes in values of k with respect to M2 in the SG model are plotted in Fig. 6. In the SG

model, for n = 1 and ∞, k = 3 and 1.8 (note this appears as 9
5 in subsequent equations), and M2 = 1

and ∞, respectively. The analytical expression for kurtosis andM2 (5) can be written as a power series.

In particular, the kurtosis parameter can be approximated as

kn→∞ = 9

5
+ 2π2

15x2 − 4
(
π2 + 18zeta[3])

45x3 + 4
(−5π2 + 3π4 + 90zeta[3])

225x4 +O(5) (21)

or

kn→1 ≈ 3 − 2x√
π2 − 8

+
(

3

2
− 2

(
π2 − 7zeta[3])(
π2 − 8

)2
)
x2 +O(3) (22)
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where x = √
M8 − 1 and zeta[3] = 1.2020 is the Riemann zeta function with integer arguments (in

this case 3) that arise in evaluating various sums and integrals. O(t) indicates components of order t
and higher.

Shortening the series described by (21) and (22) by the second component, they become

kn→∞ ≈ 9

5
+ 2π2

15x2 (23)

and

kn→1 ≈ 3 − 2x√
π2 − 8

(24)

Considering the second part of (23) and (24) (the first component of (23) and (24) gives the exact value
of the kurtosis factor whenM2 = ∞ and 1, respectively). However, to obtain a parametric relationship
between these two standard parameters for intermediate values of n, the Padé approximation for this
situation is considered as

P(x) ≡ c0

1 + b1x+b2x2 (25)

The coefficient in (25) can be obtained by replacing P(x) with the approximated expressions for
kurtosis (23) and (24), multiplying them by the denominator and then solving these equations. Finally,
the parametrical expression for kurtosis (SG model) can be calculated as

KSG = 1.8 + 1.2
/[

1 + 1.079(M8 − 1)+ 1.2189
√
(M8 − 1)

]
(26)

Following the same method, M2 can be given in term of k

M2
SG = M2

s =

√√√√√√
6
5 −

√
k − 9

5 + (k − 9
5

)
[

1 + 0.185
√
k − 9

5 − 0.01
(
k − 9

5

)]√
k − 9

5

(27)

It must be noted that even though the higher order terms in our approximation have been neglected,
the value of the beam propagation factor for an arbitrary k can be predicted by (27) to within ±0.09
error compared with the value given by the numerical calculation (e.g., for k = 3 (when n = 1),
M2 = 1.0001).

5.2. The correspondence between M2 and k for the FGB1 and FGB2 models
Considering the changes of k (5), (14), and (16) with respect toM2 (5), (13), and (16) in the FGB1

and FGB2 models, both models reveal similar relationships between k and M2 factors (Fig. 6). Thus,
following the method described in the previous section, a parametric plot of kurtosis versus M2 can be
fitted to the data points of both models that is described by

kFGB1,2 = 1.8 + 1.2
/[

1 +
(

1.5708(M8 − 1)+ 1.3713
√
(M8 − 1)

)]
(28)

where kFGB1,2 is the predicted value of the kurtosis factor in the FGB1 and FGB2 models for a given
value ofM2 where�(K) ≤ 0.007, and�k = |kFGB − k|. Clearly, excellent agreement can be presented
between the data obtained using numerical calculation (1), (2), (13), (14), and (16) and the parametric
curve that is a best fit interpolation (28) in Fig. 7.

Following the same method, M2 for FGB1 and FGB2 can be given in term of k

M2
FGB1,2 =

√√√√√√
0.955 −

√
k − 9

5 + (k − 9
5

)
[

1 − 0.4
√
k − 9

5 + 0.3
(
k − 9

5

)]√
k − 9

5

(29)
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Fig. 7. A comparison between the analytical data for the FGB2 model and the generalized parametric
formula derived using the Padé approximation (28).

5.3. The correspondence between M2 and k through the reference formula
Finally, considering all data, a reference curve lying between the curves described by (26) and (28)

is introduced as

Kref = 1.8 + 1.2
/{

1 + 1.29

[
−1 +

(
M2
)4
]

+ 1.07

√[
−1 + (M2

)4]} (30)

The kurtosis factor predicted by (30) for an arbitrary M2 is related to the values given by the three
different models through KSG = Kref + �k and KFGB = Kref − �k, where 0 ≤ �k ≤ 0.01, and in
which KSG and KFGB represent the kurtosis parameter for the SG and FGB1-2 models, respectively.

Again, the same method is employed to derive a reference formula for M2 in term of k

M2
ref =

√
1.15 − √

k − 1.8 + (k − 1.8)

(1 + 0.24
√
k − 1.8 − 0.145(k − 1.8))

√
k − 1.8

(31)

Also for all three models describing flat-top beams, the relationship betweenM2 and k or vice versa can
be replaced by (30) or (31), and it is possible to replace one expression with the other without significant
error.

6. Defining the model parameters of the SG, FGB1, and FGB2 models
using M2 and k

To employ a model to predict a real flat-top laser beam profile, parameters such as beam width at the
waist, the wavelength, and particularly the model parameter (beam order) must be known. The model
parameter can be approximately defined by measuring the beam irradiance distributions of the real beam
in a number of planes (from the near to the far field) and fitting these data to various analytical beam
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profiles produced by different beam orders. Alternatively, a parametric formula in terms of k or M2

can be obtained, using the Padé approximation method, to predict the model parameters. The second
solution is quick, convenient, and accurate. In the following sections, expressions describing the model
parameter in three different models (n,N , and a) are given in terms of the beam parameters (k andM2).
Depending on the application and practical preferences, either k or M2 can be used. For example, the
data measured in the near field are sufficient to calculate the kurtosis factor and the beam profile can be
characterized at any other point. However, the most common laser beam analyzer instruments are able
to calculateM2 for flat-top beams (using the far field as well as the near field). In the following section,
we will demonstrate that by substituting one of these beam parameters in the analytical expressions that
will be obtained for the model parameters, researchers will be able to choose the appropriate model to
analyse and characterize a real laser beam (examples will be demonstrated in the experimental section).

6.1. The SG model

As in Sect. 4, the SG model will be considered initially. Considering the series theorem, n can be
approximated by two series as a function of M2

n = 1

2
+ 3

√(
M2
)4 − 1

2
+

3
4 − π2

9√(
M2
)4 − 1

+ − 3
16 + π2

54 − 4π4

243 − 4zeta[3]
9[√(

M2
)4 − 1

]3

+ 2
(
π2 + 6zeta[3])

27
[(
M2
)4 − 1

] + O

⎧⎨
⎩ 1[(

M2
)4 − 1

]
⎫⎬
⎭

3/2

(32)

and

n = 1 +
√
M8 − 1√
π2 − 8

+O
(√
M8 − 1

)2
(33)

For largeM2, the beam order can be approximated using (32), and (33) enables us to predict the values
of n for a small M2. Considering the Padé method and (32), and (33)

P(x) ≡ c0 + c1x + c2x
2

1 + b1x
(34)

a new formula for beam order in terms of M2 is obtained

n = 1 +
√(
M2
)4 − 1√

π2 − 8
+

[(
M2
)4 − 1

]
(
π2 − 8

)2 [1 + 5
√
(M2)

4−1(π2−7zeta[3])
2(π2−8)

3/2
(
−2+3

√
π2−8

)
] (35)

The same method can be used to obtain the correspondence between the beam orders and the kurtosis
factor

n =
1 + (3 − k)2 + 5(3−k)

3
√
π2−8√(

5
6 + (3 − k)+ (3 − k)2 + 2(3 − k)3

) (
k − 9

5

) (36)
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Fig. 8. A comparison between data describing the changes of N versus M2 for the FGB1 model and the
generalized parametric formula described by (38).

6.2. The FGB1 model
Considering (11) and employing the Padé approximation as

P(x) ≡ c0 + c1x + c2x
2 + c2x

2

1
(37)

a parametric expression for the beam order in FGB1 is obtained

N = 12
(
M2 − 1

)
+ 2.5

(
M2 − 1

)2 + 14
(
M2 − 1

)3
(38)

The change in N as M2 increases is plotted in Fig. 8.
Using the Padé method and (12), the beam order can be defined in terms of the kurtosis factor for

FGB1 with an error of �N = ±2 as

N =
√√√√ 20

13(
k − 9

5

)2 −
√
k − 9

5
+
(
k − 9

5

)
(39)

By measuring the beam intensity profile at z = 0, the kurtosis factor can be determined using (2). Thus,
researchers can easily define the beam order (i.e., N ) using (39).

6.3. The FGB2 model
Due to mathematical difficulty and a lack of analytical expressions for the beam parameters in

FGB2, establishing the series theorem is a difficult task. However, using alternative numerical methods
such as the curve of best fit, a parametric formula can be obtained

a = 1

15
+ exp

(
− 10

3.5

√(
M2
)2 − 1

)
+ 2.5 exp

(
−10

4
√(
M2
)2 − 1

)
(40)

and plotted in Fig. 9. Alternatively, considering (2), (16), and (20), for a given kurtosis at z = 0 we are
easily able to define a

a = −7.637k + 9.953k2 − 4.2635k3 + 0.611k4 (41)
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7. Application to describe the propagation of a real flat-top laser beam

As has been discussed earlier, three different models describing flat-top beams can be employed for
characterizing the propagation of a real laser beam along the z-axis. To do this, the model parameters
describing FGB2 and FGB1 beam characteristic, namely, n, N , and a in the SG, FGB1, and FGB2
models, respectively, must be determined. This can be done through two different approaches.

The kurtosis factor can be calculated in just one plane using the measured beam intensity profile at
z = 0 (corresponding to the plane immediately behind the output coupler) and (2), (36), (39), or (41)
can then be employed to determine the model parameters. The reference formula given by (31) can also
be used to estimate the beam propagation factor M2.

Alternatively, in various instruments that are commonly used by laser physicists, M2 can be deter-
mined automatically, by measuring the beam intensity profiles at different points. Therefore, (35), (38),
and (40) enable us to determine the model parameters. It must be noted that a difference between the
predicted angle of divergence in the paraxial approximation theorem and in the experimental regime
can occur. A useful equation used by experimentalists to derive the beam propagation factor is [20]

M2
exp = 4πd0D0

λf
(42)

where f is the focal length of the lens used to focus the beam into the far field, d0 and D0 are the
effective beam diameters of the beam in near and far field. The angle of divergence in the paraxial
regime is described in ref. 21

θ = 4λM2

πd0
(43)

ReplacingM2 in (43) by its experimental or theoretical values, the angle of divergence in the theoretical
or experimental regimes can be predicted. In an ideal system, these two values are identical, however,
real laser beams (such as those employed in the following experimental section) are not generally
perfect. In such cases, the theoretically determined angles of divergence are usually smaller than those
predicted experimentally.

8. Experimental analysis

8.1. Experimental set up (near field)
The laser used in this study was a conventional 20 W copper vapour laser (CVL) (active volume

25 mm diameter × 1 m long) with a thyratron-switched excitation circuit consisting of two stages of
pulse compression. The laser was operated with a 2% H2–Ne buffer gas (buffer gas pressure of 40 Torr)
at a pulse repetition frequency of 10 kHz [22].

The optical resonator was a negative branch on-axis unstable, confocal resonator formed by a
R1 = 4 m high reflector (50 mm diameter) at one end and a 50% reflecting mirror located at 45◦ to the
axis, which directed the centre of the beam onto an auxillary reflector [22]. The auxillary reflector had
the radius of curvature (R2) of 5 cm, corresponding to a resonator magnification (R1/R2) of M = 80.
The optical resonator, shown in Fig. 10 produces a top-hat beam profile.

The pulse-averaged near-field intensity profile of the green component of laser output (at z = 0,
corresponding to the plane immediately behind the output coupler) was recorded by using a dichroic
filter to reject the yellow component and imaging via a f = 160 mm achromatic lens onto the CCD
camera of a Spiricon laser beam analyzer. The beam width at z = 0 is 25 mm.

8.2. Experimental set up (far field)
Pulse-averaged far-field intensity profiles of the green laser output were examined by taking a low-

power sample of the output (via reflections from several wedges), and then bringing this sample to focus
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Fig. 9. A comparison between data describing the changes of a versus M2 and the generalized parametric
formula described by (40).

Fig. 10. The oscillator used in the copper vapour laser to produce a flat-top beam.

using a f = 750 mm achromatic doublet lens. A magnified image of this focal spot was produced on
the CCD camera of the laser beam analyser using a f = 75 mm singlet lens. The effective beam width
was determined to be 50 µm.

9. Results and discussion

A near-field intensity profile of the CVL recorded at z = 0 is plotted in Fig. 11. Considering (2)
and a best fit to the measured intensity of beam profiles at z = 0, we calculate the kurtosis parameter
as 1.822 ± 0.002. As is illustrated in Fig. 6, for a given M2 the SG model always predicts a larger k
compared with the FGB1 and FGB2 models. Note that the upper limit in 1.822 ± 0.002 estimates the
values given by the SG model (1.824) while the lower limit approximates the kurtosis values in the
FGB1 and FGB2 models (1.820). By substituting this value for k in the (36), (39), and (41), the model
parameters (n, N , and a in SG, FGB1, and FGB2 models, respectively) can be obtained as 10, 62, and
0.07, respectively. The reference formula (31) is then used to estimate M2 as 2.5 ± 0.1. Considering
the theoretical value ofM2, the angle of divergence in the paraxial regime is 65.1 ± 1.2µ rad. To define
M2 experimentally the intensity profile in the far field was also measured.

The M2 for this laser is determined to be 2.52 ± 0.11, which is in good agreement with the result
predicted by the reference formula. Furthermore, the upper limit gives the closest value to the value
predicted by the SG model while the closest approximation to the values given by the FGB1 and FGB2
models is given by the lowest limit. The angle of divergence, measured experimentally as 66.7 µrad, is
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Fig. 11. The near field intensity profile at z = 0 (corresponding to the plane immediately behind the output
coupler of the copper vapour laser).

also in excellent agreement with that calculated using the reference formula and one near-field intensity
profile (the difference is about 2%). Using this information, the beam parameter for each of the three
analytical models describing flat-top beams can be obtained. For example, for the SG model, using
the upper limit of 2.52 ± 0.11 as 2.63, the model parameter n, is approximated using (27) and (35) as
n = 10. For the FGB models model, using the lowest limit of 2.52 ± 0.11 as 2.41, the beam parameter
in the FGB1 model, N , is defined as 62 and similarly, a in the FGB2 model is 0.07.

It can be seen that, there is an excellent agreement between the results obtained using either of the
two approaches.

As it can be seen in Figs. 6–7, the FGB1 model is, in general, the most convenient to use except for
a comparatively high value of k (k ≥ 2.1) where the FGB2 model is most appropriate, because

(1) it can be defined as a superposition of higher order modes in cylindrical coordinates, thus, the
analytical concepts of beam diameter, and radius of curvature can be adopted,

(2) the finite limit in the summation of modes makes mathematical evaluation adequately simple,

(3) the slowness of change in the shape of the irradiance distribution, caused by the increase in N , is
a particular advantage of the FGB1 model compared with the SG model,

(4) and the FGB1 model is compatible with the FGB2 model for cases where the latter is most
appropriate (high k).

For the experimental data of Fig. 11, the kurtosis parameter was measured as 1.822, for which the
FGB1 model is most appropriate. Using the corresponding FGB1 beam order of N = 62, eq. (3) from
ref. 22 is used to fully characterize the propagating beam and predict the beam profiles at any arbitrary
point along the z-axis. Figure 12 shows the comparison between the theoretical predictions using the
FGB1 model for N = 62 and the experimental measurements of the real beam profile at various points
along the propagating path.

We see, for example, at z = 1 m two small peaks appear on the shoulders of the intensity profile. At
z = 2 m, the peaks on the shoulders become more pronounced, and at z = 5 m further distortion becomes
apparent. At z = 15 m, three peaks can be seen with the central peak the most dominant. Excellent
agreement is also observed between the calculated and experimental far-field intensity profiles.
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Fig. 12. The comparison between the theoretical predictions and experimental measurements at z = 0, 1, 2,
5, 15 m and the far field.

10. Conclusion

Three analytical models describing beams with uniform irradiance distributions have been consid-
ered. Based on the second- and fourth-moments formalism, analytical expressions for two standard
parameters (i.e.,M2 and k) were derived. Using the Padé method a reference formula linking the beam
propagation factor M2 and the kurtosis parameter k has been obtained.

Using the same method, a relationship between beam parameters for these three models (i.e., N , a,
and n, respectively) was derived. The kurtosis parameter can be determined measuring the beam profile
in the near field (z = 0). This allows for a highly accurate prediction of the parameters required for
these analytical models to be made.

Thus, a single near-field profile measurement allows a flat-top beam profile to be predicted in any
arbitrary plane along the propagation axis to the far field. In addition, a second profile measurement
(far field) enabled us to calculate the experimental beam propagation factor M2 (and related angle of
divergence) and compared them with the estimated values using measured k and the reference formula.

We believe this approach to flat-top laser beam characterization can be very useful in a range of
laser applications.
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