This is the published version of:

Annemarie Nadort; Luen Liang; Ekaterina Grebenik; Anna Guller; Yiqing Lu; Yi Qian; Ewa Goldys; Andrei Zvyagin; “Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo”. Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 96683Y (December 22, 2015)

Access to the published version:

http://dx.doi.org/10.1117/12.2202449

Copyright:

Copyright 2015 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo

Annemarie Nadorta, Liuen Lianga,b, Ekaterina Grebenika, Anna Gullera, Yiqing Lua, Yi Qianb, Ewa Goldysa and Andrei Zvyagina

aARC Centre of Excellence for Nanoscale BioPhotonics, MQ Photonics, Macquarie University, NSW 2109, Australia

bFaculty of Medicine and Health Science, Macquarie University, NSW 2109, Australia

ABSTRACT

Nanoparticle-based delivery of drugs and contrast agents holds great promise in cancer research, because of the increased delivery efficiency compared to ‘free’ drugs and dyes. A versatile platform to investigate nanotechnology is the chick embryo chorioallantoic membrane tumour model, due to its availability (easy, cheap) and accessibility (interventions, imaging). In our group, we developed this model using several tumour cell lines (e.g. breast cancer, colon cancer). In addition, we have synthesized in-house silica coated photoluminescent upconversion nanoparticles with several functional groups (COOH, NH$_2$, PEG). In this work we will present the systematic assessment of their in vivo blood circulation times. To this end, we injected chick embryos\textit{ex ovo} with the functionalized UCNPs and obtained a small amount of blood at several time points after injection to create blood smears. The UCNP signal from the blood smears was quantified using a modified inverted microscope imaging set-up. The results of this systematic study are valuable to optimize biochemistry protocols and guide nanomedicine advancement in the versatile chick embryo tumour model.

\textbf{Keywords:} upconversion nanoparticle, chick embryo chorioallantoic membrane, drug delivery, blood circulation time

1. INTRODUCTION

Upconversion photoluminescence is a nonlinear optical process where two or more near infrared excitation photons are converted to higher energy emission photons. Unlike other multiphoton processes (2-photon fluorescence, second harmonic generation), in the upconverting system real intermediate excited states are involved, usually within the f-electrons of lanthanide ions, which enables the process to happen at moderate excitation density ($1 - 10^2$ W/cm2). The synthesis of nanoscale upconverting materials consisting of an inorganic crystalline host matrix doped with lanthanide-ions2,3, increased the interest for biomedical applications4.

Upconversion nanoparticles (UCNPs) have several optical advantages for biomedical imaging, such as background-free imaging capability5, excitation and emission within the tissue optical transparency window6 and long emission lifetimes allowing time-gated detection. For effective \textit{in vivo} application, UCNPs should not only exhibit advantageous optical properties but also excellent biochemical properties. The evaluation of UCNP properties in the context of \textit{in vivo} situations is crucial for the translation of UCNPs from the lab to clinical applications.

An identified purpose is the delivery of UCNPs through the leaky tumour vasculature for enhanced detection and/or tumour therapy7. In view of this, a versatile model is the chick embryo chorioallantoic membrane (CAM), an extra-embryonic vascularised membrane responsible for the gas exchange of the developing chick embryo. The development of protocols

*annemarie.nadort@mq.edu.au
describing *ex ovo* culturing of chick embryos by transferring the embryo into a sterile container, enabled exposure of the CAM and easy access for intervention and imaging. Since the embryos are immune-deficient (up to embryonic development day 14) foreign cancer cells can be introduced without rejection. Grafting tumour cells on the CAM results in their adoption by the CAM and subsequent tumour-induced angiogenesis enables their growth into proliferating, vascularized tumours. The CAM-based tumour development and their microvascular environment can be studied in detail, including the delivery of photoluminescent macromolecules like fluorescent dextran and virus-derived fluorescently labelled nanoparticles to the tumour sites. The presence of nearly all relevant stroma factors e.g. immune cells (at a later stage), extracellular matrix components, blood and lymphatic vessels make the CAM model highly suited for studying tumour-stroma interactions, tumour metastasis, and therapy-induced changes in tumour development, implying the upcoming role of the CAM model in cancer research.

For *in vivo* use, UCNPs should exhibit surface properties that offer a good dispersability in buffers and ensure biocompatible interaction with tissues. Unfortunately, inorganic nanoparticles are naturally colloidally instable, and prone to aggregation due to the vanderWaals attractive forces between them. In biological media UCNPs can bind to proteins, or other molecules, which can influence their photochemical and biochemical properties, and the biological response and distribution *in vivo*. Several strategies in surface chemistry have been developed to repel the UCNPs from each other, for example by adding surface charge to induce electrostatic repulsion or molecular spacers for steric repulsion. Since UCNPs are generally hydrophobic after preparation by the solvothermal decomposition method, UCNPs firstly need to be transferred into the aqueous phase. Silanization and water-dispersible polymer functionalization are commonly used methods. Among them, silica coating with functional groups (-NH$_2$, -COOH, -SH) and PAA, PMAO, PEG wrapping are popular surface modifications for UCNPs *in vitro* and *in vivo* studies. In addition, the functional groups provide opportunity for the binding of molecules (e.g. antibodies) with tumour-specific targeting properties. Biocompatible surface properties prevent or delay the uptake by the immune system thereby increasing the nanoparticle circulation times. Long circulation times enhance the probability that the particles will end up in the tumour and facilitate enhanced tumour visibility or induce therapy. Feedback on the UCNP chick embryo circulation time is thus meaningful for UCNP design. In this proceeding we report our first preliminary *in vivo* results on the blood circulation time of silica coated UCNPs, further functionalized with -NH$_2$, -COOH, and -PEG surface groups in the chick embryo vasculature.

2. METHODS

2.1. Synthesis and characterization of UCNPs

The UCNPs were synthesized and coated in house. Core β-NaYF4:Yb,Er nanoparticles were synthesized following a protocol developed previously. To prepare UCNP@SiO$_2$ a modified water-in-oil microemulsion method was used. Silica coated UCNPs were further conjugated with APTES, APTES plus succinic anhydride and MPEG-silane, to obtain NH$_2$, COOH and PEG surface functional groups, respectively. The resulting particles were mono-disperse, with an average size of ~28±1.5 nm after silica-coating. TEM images, size distribution and emission spectrum of the particles, are shown in Fig. 1.

2.2. Chick embryo *ex ovo* culturing

Fertile eggs were purchases and the embryos were incubated *in ovo* for 3 days while being rotated every 180 min, at 37.5°C and 70% humidity. At embryonic development day (EDD) 3 the eggs were carefully opened and the contents transferred to sterile plastic weighing boats, perforated for oxygen transfer and covered with sterile plastic wrapping. The embryos were returned to the incubator with the same temperature and humidity settings. At EDD 15 the embryos were removed from the incubator and carefully injected with 50 ul 0.5mg/mL UCNP@SiO$_2$-COOH, UCNP@SiO$_2$-NH$_2$ or UCNP@SiO$_2$-PEG respectively, using micrometer-sized glass needles under stereomicroscopic viewing. At several time points after injection a small amount of blood (5 ul) was drawn from the chick embryo, away from the site of injection. A maximum of 6 time points per chick embryo was chosen to reduce physiological impact. To cover a wide range of time points [2 - 720 min] and increase the accuracy of the results given unavoidable biological variations we included a total of 22 chick
embryos in the experiment. The average number of chick embryos per time point per coating was 2.8 with a minimum of 2. The protocol has been evaluated and approved by the Animal Ethics Committee.

2.3. Blood smear preparation

Immediately after drawing the blood samples were prepared as blood smears on microscope objectives, resulting in a monolayer of red blood cells (RBCs) on each slide. The circulating UCNPs present in the blood samples would thus be deposited on the slides as well and could be quantified using upconversion microscopy. No anticoagulants were used in this procedure. We fixed the slides using 100% methanol.

2.4. Upconversion microscopy

The slides were imaged with a wide-field inverted epi-luminescence microscope (Olympus IX70, with objective 40×, NA 1.15) modified to allow external laser illumination at the sample plane (fiber-coupled diode laser at wavelength 980 nm,
Shenzhen LEO Photoelectric Co. Ltd). The excitation laser was directed to the focal plane using a modified Köhler illumination scheme and adjustable iris diaphragm to achieve uniform and controlled excitation power density and spot size at the sample plane. A detailed description of the imaging system is provided in ref 26. During the whole experiment the excitation density was kept at 440±10 W/cm² (720±20 mW on a circular spot of 230 μm in diameter). An EMCCD camera (Andor iXon DU-885) was mounted to the microscope detection port. We used a high-pass absorbance filter as emission filter (cut-off 850 nm, Edmund Optics); a dichroic beam-splitter (cut-off, 511 nm, Semrock) for the reflection of 980 nm toward the sample and passing the visible emitted light to the detection path; and two additional filters (short pass interference filter, cut-off 842 nm, Semrock and band pass filter, KG-5 coloured glass, Thorlabs) as emission filters. The combination of a high-performance interference filter and coloured glass band pass filter was needed to adequately reject the high excitation power scattered by the cells.

2.5 Image acquisition

Each blood smear slide corresponded to a specific time point after injection, UCNP-coating group and chick embryo. A total of 100 slides were collected. We installed an automated X,Y scanner at the sample plane, however, re-focusing after spatial translation was needed so that the process was only semi-automatic. As the slide covers an area of several cm², imaging the whole slide was too time-consuming. As the UCNP-signal decreased with time we recorded more images per slide for the longer time points. A minimum of 20 regions per slide was recorded, corresponding to an area of minimally 0.5 mm². Each UCNP-image was recorded 3 times, and the average image was saved. The exposure time and EMgain were fixed at 0.5s and x100 respectively during the whole experiment. In addition, due to an inhomogeneous distribution of RBCs over the microscope slides we took bright field and UCNP-images of the same area to correct for the number of RBCs (and thus correct for sampled blood volume).

2.6. Image analysis

The fast amount of images (~8000) required an automated analysis. The UCNP-images were 2x2 pixel binned to reduce the read noise. A positive UCNP signal was defined as an SNR of 5 or higher, (the Rose criterion states that an SNR of at
least 5 is needed to be able to distinguish image features at 100% certainty\(^1\). The background noise contained a slight gradient, however, as the UCNP signal was sparsely distributed over the images, it was possible to estimate the local noise level as the mean of a 30x30 pixel area around a central pixel. If the central pixel value (signal) was 5 times higher than the local noise, the pixel was designated UCNP signal. In addition to simply 'adding' the entire UCNP signal per blood smear we also quantified the distribution of UCNP signal by grouping adjacent signal pixels together that belong to one UCNP-node. This way we obtained information on the size distribution of the UCNP nodes in the blood smears. Finally, the bright field images were used to correct for the blood sample volume related to the UCNP signal. The bright field images were histogram equalized to get consistent results, subsequently binarized by thresholding to obtain the total area as a measure for number of RBCs. The process is schematically drawn in Fig. 2.

3. RESULTS

The quantified UCNP-signal in the blood smear images as a function of time after injection is shown in Fig. 3. All data points are averaged over all images and chicken embryos, and corrected for RBC area in the bright field images. As can be seen, the \(\text{--PEG} \) and \(\text{--NH}_2\) coated UCNP@SiO\(_2\) don’t decrease much in the first ±20 minutes, however they rapidly decrease in the following period. We can estimate the blood circulation halftime at \(\tau_{1/2,\text{PEG}} = 25±10\) minutes, and \(\tau_{1/2,\text{NH}_2} = 20±10\) minutes. On the other hand, COOH coated UCNP@SiO\(_2\) already show a reduced signal in the beginning, which does not decrease much with time. No reliable estimate of \(\tau_{1/2,\text{COOH}}\) can be made. A further analysis of the images showed that the size distribution of the detected UCNP nodes in the blood smears is quite different for the \(\text{--COOH}\) group as compared with the \(\text{--PEG} \) and \(\text{--NH}_2\) groups. This is shown in the bar plots in Fig. 4 where the contribution of small, medium and large UCNP nodes (‘clusters’) to the total signal is calculated, for three different coatings and three different time ranges (short, medium and long). Clearly, the \(\text{--COOH}\) group is much more influenced by large UCNP-nodes as compared with the \(\text{NH}_2\) and PEG groups. This early and substantial clustering of the particles in blood is subject of further study, but should be taken into account when interpreting the data points in Fig. 3.

![Fig. 3. Blood circulation behavior of UCNP@SiO\(_2\) functionalized with 3 different surface groups: NH\(_2\), COOH and PEG, in chick embryo circulation. The UCNP-signal as a function of time after injection is quantified from blood smear microscopic images, as described in the text.](http://proceedings.spiedigitallibrary.org/proceedingspdf/96683Y-5.png)
4. CONCLUSION

We have shown our first, preliminary results of the blood circulation time of UCNP@SiO$_2$ coated with different functional surface groups. The results show that a blood circulation half time of around 20 – 25 minutes can be expected for UCNPs in the chick embryo ex ovo model. Up to several hours after injection particles could still be detected in the blood smear samples. Future investigations on the colloidal behavior of the particles are necessary to draw further conclusions on the blood circulation time of COOH-coated particles. Our practical investigation gives important feedback on the behavior of nanoparticles in the blood stream and is an essential step towards nanoparticle-based drug delivery for oncological purposes.

ACKNOWLEDGMENTS

This work was partially funded by the Australian Research Council, DP140104458 to E.G. We thank Dr. Varun Sreenivasan for his support with epi-fluorescence microscopy.

REFERENCES

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781628418903

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2015, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/15/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a six-digit CID article numbering system structured as follows:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, ..., 0Z, followed by 10-12, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

ix Author Index
xiii Conference Committee
xvii Introduction

MICRO/NANOFLUIDICS AND OPTOFLOWIDICS I

9668 0D Thermoset polyester-based superhydrophobic microchannels for nanofluid heat transfer applications [9668-10]

PHOTONICS I

9668 0F Fabrication and optical characterisation of InGaN/GaN nanorods [9668-12]
9668 0H Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation [9668-14]
9668 0I Mid-infrared silicon pillar waveguides [9668-15]

NANOSTRUCTURED MATERIALS II

9668 0L Mesoscopic effects in discretised metamaterial spheres [9668-18]
9668 0O Dynamic control of THz waves through thin-film transistor metamaterials [9668-21]
9668 0T Relative humidity sensing using dye-doped polymer thin-films on metal substrates [9668-27]

MICRO/NANOFLUIDICS AND OPTOFLOWIDICS II

9668 0V Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes [9668-29]
9668 0W Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models [9668-30]
9668 0X Printed circuit boards as platform for disposable lab-on-a-chip applications [9668-31]
9668 0Y Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip system [9668-32]
9668 0Z 3D printed polymers toxicity profiling: a caution for biodevice applications [9668-33]
Lab-on-chip platform for circulating tumor cells isolation [9668-34]

Bubble-induced acoustic mixing in a microfluidic device [9668-36]

Automation of Daptoxkit-F biotest using a microfluidic lab-on-a-chip technology [9668-37]

PHOTONICS II

Damage monitoring using fiber optic sensors and by analysing electro-mechanical admittance signatures obtained from piezo sensor [9668-41]

Electron-beam induced diamond-like-carbon passivation of plasmonic devices [9668-42]

Tunable microwave notch filter created by stimulated Brillouin scattering in a silicon chip [9668-44]

POSTER SESSION

Effect of BMITFSI to the electrical properties of methycellulose/chitosan/NH4TF-based polymer electrolyte [9668-158]

Fabrication and optical characterization of a 2D metal periodic grating structure for cold filter application [9668-166]

Illumination dependent carrier dynamics of CH3NH3PbBr3 perovskite [9668-168]

Dynamic evaluation and control of blood clotting using a microfluidic platform for high-throughput diagnostics [9668-171]

Testing organic toxicants on biomicrofluidic devices: why polymeric substrata can lead you into trouble [9668-175]

Evaluation of additive element to improve PZT piezoelectricity by using first-principles calculation [9668-177]

Resonance breakdown of dielectric resonator antennas on ground plane at visible frequencies [9668-179]

Calculation of the dynamic characteristics of micro-mirror element based on thermal micro-actuators [9668-182]

Efficient butt-coupling of surface plasmons on a silver-air interface [9668-183]

Development of functional nano-particle layer for highly efficient OLED [9668-188]

Misalignment tolerant efficient inverse taper coupler for silicon waveguide [9668-190]
9668 2C Design and simulation of piezoelectric PZT micro-actuators with integrated piezoresistive displacement sensors for micro-optics applications [9668-191]

9668 2D Surface plasmon interference lithography using Al grating structure on glass [9668-192]

9668 2H Preparation and imaging performance of nanoparticulated LuPO$_4$:Eu semitransparent films under x-ray radiation [9668-196]

9668 2J Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation [9668-198]

9668 2N Development of myoelectric control type speaking valve with low flow resistance [9668-203]

9668 2S Luminescent solar concentrator improvement by stimulated emission [9668-208]

9668 2T Investigation of emission properties of vacuum diodes with nanodiamond-graphite emitters [9668-209]

9668 2W Hollow silicon microneedle array based trans-epidermal antiemetic patch for efficient management of chemotherapy induced nausea and vomiting [9668-214]

9668 2Y A homeostatic, chip-based platform for zebrafish larvae immobilization and long-term imaging [9668-174]

9668 2Z Quantum plasmonics for next-generation optical and sensing technologies [9668-216]

NANOSTRUCTURED MATERIALS III

9668 33 Evaluation of zinc oxide nano-microtetrapods for biomolecule sensing applications [9668-55]

9668 34 2D materials for nanophotonic devices (Invited Paper) [9668-56]

NANOPHOTONICS FOR BIOLOGY AND MEDICAL APPLICATIONS I

9668 3B Some minding about the creation of multi-spectrum passive terahertz imaging system [9668-61]

PHOTONICS III

9668 3J Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes (Invited Paper) [9668-70]
Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics [9668-74]

Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector [9668-75]

Optical properties of arrays of five-pointed nanostars [9668-77]

Plasmonic response in nanoporous metal: dependence on network topology [9668-78]

Graphene nano-ribbon with nano-breaks as efficient thermoelectric device [9668-80]

Modeling of graphene nanoscroll conductance with quantum capacitance effect [9668-81]

Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo [9668-84]

A wirelessly powered microspectrometer for neural probe-pin device [9668-85]

Multimode fibres: a pathway towards deep tissue fluorescence microscopy [9668-86]

Optical parameter measurement of highly diffusive tissue body phantoms with specially designed sample holder for photo diagnostic and PDT applications [9668-88]

Improved properties of phosphor-filled luminescent down-shifting layers: reduced scattering, optical model, and optimization for PV application [9668-90]

Nanostructured metallic rear reflectors for thin solar cells: balancing parasitic absorption in metal and large-angle scattering [9668-93]

Novel plasmonic materials to improve thin film solar cells efficiency [9668-94]

Ultrafast charge generation and relaxation dynamics in methylammonium lead bromide perovskites [9668-95]

Nanosphere lithography for improved absorption in thin crystalline silicon solar cells [9668-97]

Acellular organ scaffolds for tumor tissue engineering [9668-102]
PLASMONICS I

9668 4L Sub-wavelength Si-based plasmonic light emitting tunnel junction [9668-107]

FABRICATION I

9668 4T Nano-engineered flexible pH sensor for point-of-care urease detection [9668-210]
9668 4U Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever [9668-115]
9668 4W CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application [9668-143]

MEDICAL AND BIOLOGICAL MICRO/NANODEVICES

9668 50 A temperature-compensated optical fiber force sensor for minimally invasive surgeries [9668-154]
9668 52 Liquid marble as microbioreactor for bioengineering applications [9668-149]
9668 53 Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare [9668-219]

PLASMONICS II

9668 57 Transforming polarisation to wavelength via two-colour quantum dot plasmonic enhancement [9668-128]
9668 5B Plasmonic nano-resonator enhanced one-photon luminescence from single gold nanorods [9668-133]
9668 5C Plasmon resonances on opto-capacitive nanostructures [9668-134]

FABRICATION II

9668 5J Spectroscopic behavior in whispering-gallery modes by edge formation of printed microdisk lasers [9668-119]
9668 5O Optical properties of refractory TiN, AlN and (Ti,Al)N coatings [9668-144]
9668 5P Optimisation of Schottky electrode geometry [9668-141]
9668 5Q Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification [9668-151]

9668 5R Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation [9668-104]

9668 5S Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses [9668-105]

9668 5T Wafer-scale epitaxial graphene on SiC for sensing applications [9668-122]

9668 5U Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes [9668-123]

9668 5V Controlled deposition of plasma activated coatings on zirconium substrates [9668-124]

9668 5W Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid [9668-224]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbey, Brian, 17
Afshar, Shahraam V., 3J
Aghili, Sina, 5W
Akhaven, Behnam, 5V
Alomeh, K., 10, 4T
Al-Ditini, Feras, 3U
Alhasan, Layla, 52
Ali, Amer, 5T
Alnassar, Mohammad Saleh N., 5P
Annamdas, Venu Gopal Madhav, 16
Anwar, S., 42
Appelt, Christian, 0F
Arbatan, Tina, 52
Argyros, Alexander, 2S
Arifin, N. A., 1J
Arnold, Matthew D., 3S, 5C, 5O
Asundi, Anand, 16
Atakaramians, Shaghik, 0H, 3J
Bagnall, Darren M., 49
Bakas, A., 2H
Balaur, Eugeniu, 17
Batentschuk, Miroslaw, 43
Best, Michael, 12
Bilek, Marcela, 5R, 5V
Bilokur, M., 5O
Bilokur, M., 5O
Blakie, Richard, 0T
Borelli, A., 47
Bolten, Lindsay C., 24
Brabec, Christoph J., 43
Broderick, N., 50
Cartlidge, Rhys, 1W
Casas-Bedoya, A., 19
Castelletto, S., 47
Chan, Peggy P. Y., 52
Chang, Yuanchih, 49
Chen, Cong, 5J
Chen, H., 50
Chen, Huaying, 12
Chen, Sheng, 1R
Chen, Sus-Han, 2B, 2C
Chen, Weijian, 0F
Cheng, Yuqiang, 5B
Cherukhin, Yuriy, 38
Choi, Haechul, 29
Choi, Kyung Cheol, 2D
Choi, Sang H., 32
Choi, Yoonseuk, 29
Christiansen, Silke, 0F
Chung, Chia-Yang, 0D
Čižmár, Tomáš, 40
Collis, Gavin E., 3O
Conibear, Gavin, 0F
Cortie, Michael B., 3R, 3S, 5C, 5O
Cousins, Aidan, 5Q
Crisostomo, Felipe, 3P
Dai, Xi, 0F
Davies, Michael, 5R
Davis, Timothy J., 57
de Sterke, C. Martijn, 24
Deng, Xiaofan, 48
Denisov, Alexander, 3B
Ding, Boyang, 0T
Disney, Claire E. R., 46
Dowd, A., 5C
Evans, Robin, 4W
Evstafyev, Sergey S., 23
Feng, Yu, 00
Firdous, S., 42
Fisher, Caitlin, 24
Fleming, Simon, 2S
Fooladavand, M., 10
Forberich, Karen, 43
Fountos, G., 2H
Friedrich, Timo, 0Z, 2Y
Fritzsche, Wolfgang, 0X
Fumeaux, Christophe, 20
Gali, Marc A., 3S
Gao, Xiaofan, 0W
Gentle, Angus R., 3S, 5O
Goktas, Hasan, 4L
Goldys, Ewa, 0X, 3Y
Gong, Qihuang, 5B
Gorchev, E. J., 2T
Gray, E., 10
Grebenik, Ekaterina, 3Y
Green, Martin A., 1R, 46, 48
Guller, Anna, 3Y, 4G
Harada, Takaaki, 4B
Hariz, Alex, 53
He, Yingbo, 5B
Heilmann, Martin, 0F
Henning, Anna M., 5Q
Hewakuruppu, Yasitha L., 3P
Hiramatsu, Kazumasa, 1Q
Hjerrild, Natasha, 3P
Ho-Baillie, Anita, 1R, 48
Qian, Yi, 3Y, 4G
Qiu, Jing Hui, 3B
Rabus, Dominik G., 1U
Rehman, A., 42
Rehman, K., 42
Ren, Fang-Fang, 0O
Roberts, Ann, 57
Rosa, L., 47
Rosengarten, Gary, 0D, 3P
Ryu, Soichiro, 5J
Sadatnajafi, Catherine, 17
Saiprasad, N., 47
Sakurai, Kohei, 2N
Samolyukov, Vyacheslav K., 23
Sardarinejad, A., 4T
Scott, Jason A., 3P
Seferis, I. E., 2H
Shadrivov, Ilya V., 3J
Shahcheraghi, N., 5C
Shekhter, Anatoly, 4G
Shen, Hongming, 5B
Shen, Wei, 52
Sheng, Rui, 1R, 48
Shrestha, Santosh, 0F
Singh, Neetesh, 0I
Skafidas, Efstratios, 3U, 4W
Skommer, Joanna, 0Z
Smith, Geoffrey B., 3S, 5O
Solodovnyk, Anastasia, 43
Song, Kyo D., 3Z
Sorger, Volker J., 4L
Srivastava, Rohit, 2W
Stern, Edda, 43
Syväjärvi, Mikael, 5T
Tai, Matthew C., 3S
Tan, Hark Hoe, 0O
Tay, C. Y., 4T
Taylor, Robert A., 0D, 3P
Tereshchenko, Anatolij M., 23
Thierry, Benjamin, 0W, 2J, 5Q
Tilley, Richard D., 5Q
Timoshenko, Alexey S., 23, 2T
Timoshenko, Sergey P., 23, 2T
Timoshenko, V. P., 2T
Tjin, Swee Chuan, 16
Topić, Marko, 43
Toprak, Muhammet S., 33, 5T
Tovar-Lopez, Francisco, 1U
Trusova, Inna, 4G
Tschiya, Kazuyoshi, 1Y
Tyc, Tomáš, 40
Uefuji, Yasutomo, 1Y
Umaba, M., 4U
Urban, Matthias, 0X
Valais, I., 2H
Voelcker, Nico, 53
Wakelin, Edgar, 5R
Wang, Chenxi, 0W
Wang, Peng, 2B, 2C
Wang, Qin, 33, 5T
Warkiani, Majid Ebrahimi, 0D
Weiss, Anthony, 5R
Wen, Xiaoming, 0F, 1R, 48
Withayachumnankul, Withawat, 20
Wlodkowic, Donald, 0Y, 0Z, 13, 1W, 2Y
Woffenden, Albert, 3P
Xia, Keyu, 5B
Xu, Renjing, 34
Xu, W., 50
Xu, Wei-Zong, 0O
Yafarov, R. K., 2T
Yakimova, Rositza, 5T
Yang, Chih-Tsong, 2J
Yang, Jianfeng, 0F
Yang, Jiong, 34
Yasoda, Yutaka, 1Y
Ye, Jiandong, 0O
Yeo, Giselle, 5R
Yoon, Hargsoon, 3Z
Yoshioka, Hiroaki, 5J
Yu, Xinghuo, 1U
Yue, Pan, 5P
Zeler, J., 2H
Zhang, Shuang, 34
Zhao, Wei, 33, 5T
Zhao, Yichen, 33, 5T
Zheng, Cheng, 3P
Zhu, Feng, 0Z, 1W, 2Y
Zhu, Shaoli, 3R
Zhu, Yonggang, 12
Ziman, M., 10
Zou, Chengjun, 20
Zou, Longfang, 20
Zvyagin, Andrei, 3Y, 4G
Zych, E., 2H
Conference Committee

Conference Chair

Benjamin J. Eggleton, The University of Sydney (Australia)

Conference Co-chair

Stefano Palomba, The University of Sydney (Australia)

Conference Program Committee

Brian Abbey, La Trobe University (Australia)
Andrea M. Armani, The University of Southern California (United States)
Marcela M. M. Bilek, The University of Sydney (Australia)
Alvaro Casas Bedoya, The University of Sydney (Australia)
Peggy P. Y. Chan, RMIT University (Australia)
Wenlong Cheng, Monash University (Australia)
C. Martijn de Sterke, The University of Sydney (Australia)
James Friend, University of California, San Diego (United States)
Ewa M. Goldys, Macquarie University (Australia)
Daniel E. Gomez, Commonwealth Scientific and Industrial Research Organisation (Australia)
Min Gu, Swinburne University of Technology (Australia)
Stefan Harrer, IBM Research Collaboratory for Life Sciences-Melbourne (Australia)
Stephen Holler, Fordham University (United States)
Baohua Jia, Swinburne University of Technology (Australia)
Saulius Juodkazis, Swinburne University of Technology (Australia)
Adrian Keating, The University of Western Australia (Australia)
Dwayne D Kirk, Melbourne Center for Nanofabrication (Australia)
Alexander M. Korsunsky, University of Oxford (United Kingdom)
Zdenka Kuncic, The University of Sydney (Australia)
Gareth F. Moorhead, Commonwealth Scientific and Industrial Research Organisation (Australia)
David Moss, RMIT University (Australia)
Dragomir N. Neshev, The Australian National University (Australia)
Fiorenzo Gabriele Omenetto, Tufts University (United States)
Kostya Ostroukhov, Commonwealth Scientific and Industrial Research Organisation (Australia)
Rupert F. Oulton, Imperial College London (United Kingdom)
Min Qiu, Zhejiang University (China)
David D. Sampson, The University of Western Australia (Australia)
Cather M. Simpson, The University of Auckland (New Zealand)
Volker J. Sorger, The George Washington University (United States)
Din Ping Tsai, Academia Sinica (Taiwan)
Niek F. Van Hulst, ICFO - Institut de Ciències Fotòniques (Spain)
Frédérique Vanholsbeeck, The University of Auckland (New Zealand)
Seok-Hyun Yun, Harvard Medical School (United States)
Yonggang Zhu, Commonwealth Scientific and Industrial Research Organisation (Australia)

Session Chairs

1A Nanostructured Materials I
Ann Roberts, The University of Melbourne (Australia)

1B Micro/Nanofluidics and Optofluidics I
Warwick P. Bowen, The University of Queensland (Australia)

1C Photonics I
Justin J. Cooper-White, The University of Queensland (Australia)

2A Nanostructured Materials II
Yuri S. Kivshar, The Australian National University (Australia)
Mikhail Lapine, University of Technology, Sydney (Australia)

2B Micro/Nanofluidics and Optofluidics II
Hywel Morgan, University of Southampton (United Kingdom)
Neetesh Singh, The University of Sydney (Australia)

2C Photonics II
Isabelle Staude, Friedrich-Schiller University (Germany)
Antony Orth, RMIT University (Australia)

3A Nanostructured Materials III
Frank Vollmer, Max-Planck-Institut für die Physik des Lichts (Germany)
Volker J. Sorger, The George Washington University (United States)

3B Nanophotonics for Biology and Medical Applications I
Krasimir Vasilev, University of South Australia (Australia)
Prineha Narang, California Institute of Technology (United States)

3C Photonics III
Igal Brener, Sandia National Labs (United States)
Christian Wolff, University of Technology, Sydney (Australia)
Nanostructured Materials IV
Kenneth B. Crozier, Harvard School of Engineering and Applied Sciences (United States)
Haisu Li, The University of Sydney (Australia)

Nanophotonics for Biology and Medical Applications II
Baohua Jia, Swinburne University of Technology (Australia)

Solar Cell Technologies
Diana Antonosyan, The Australian National University (Australia)
Alexander L. Gaeta, Columbia University (United States)

Biocompatible Materials I
Yuerui Lu, The Australian National University (Australia)
Sergey S. Kruk, The Australian National University (Australia)

Plasmonics I
Nikolai Strohfeldt, Universität Stuttgart (Germany)
Stefan A. Maier, Imperial College London (United Kingdom)

Fabrication I
Mingkai Liu, The Australian National University (Australia)
Arnan Mitchell, RMIT University (Australia)

Medical and Biological Micro/Nanodevices
Halina Rubinsztein-Dunlop, The University of Queensland (Australia)

Plasmonics II
Shaghik Atakaramians, The University of Sydney (Australia)
Timothy D. James, The University of Melbourne (Australia)

Fabrication II
David D. Sampson, The University of Western Australia (Australia)
Alexander S. Solntsev, The Australian National University (Australia)

Biocompatible Materials II
Peggy P. Chan, Swinburne University of Technology (Australia)
Introduction

In December 2013, the United Nations declared 2015 as the International Year of Light (IYL), recognizing the immense importance of light-based technologies in our lives, for our futures, and for the development of humankind.

In December 2015, the SPIE Micro+Nano Materials, Devices, and Applications symposium and the new Australian Institute for Nanoscience (AIN) at the University of Sydney’s Camperdown campus offered the opportunity to celebrate the culmination of the IYL and heightened global awareness of the importance of light-based technologies, including nanoscience.

The SPIE symposium is an interdisciplinary forum for collaboration and learning among top researchers in all fields related to nano- and microscale materials and technologies. This 2015 event took place over 4 days, 6-9 December, and included both oral and poster presentations with a focus on nanostructured and biocompatible materials, medical and biological micro/nanodevices, micro/nanofluidics and optofluidics, nanophotonics for biology and medical applications, plasmonics, and solar cell technologies and fabrication.

The University of Sydney is Australia’s first university with an outstanding global reputation for academic and research excellence. Located close to the heart of Australia’s largest and most international city, the Camperdown campus features a mixture of iconic gothic-revival buildings and state-of-the-art teaching, research, and student support facilities. The University of Sydney attracts many of the most talented students in Australia drawn by its range of quality degrees and strong track record of research programs. The University’s academics are leaders in their disciplines nationally and internationally, driving major research initiatives.

Sydney is Australia’s truly international city and one of the world’s most iconic and livable cities in the world, with plenty of open space, famous beaches, glittering harbour, waterways and bushland, great climate and vibrant culture rich of entertainment, cultural activities, and sporting events. Sydney is at the heart of Australia’s economy, and is ranked first in the Asia Pacific in terms of intellectual capital and innovation. Sydney offers a safe and secure environment for individuals and families, with world-class health care, education, transport and telecommunications with a multicultural environment as over a third of Sydney’s population was born overseas.

Benjamin J. Eggleton
Stefano Palomba