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Anyons are particlelike excitations of strongly correlated phases of matter with fractional statistics,

characterized by nontrivial changes in the wave function, generalizing Bose and Fermi statistics, when

two of them are interchanged. This can be used to perform quantum computations [A.Yu. Kitaev, Ann.

Phys. (N.Y.) 303, 2 (2003)]. We show how to simulate the creation and manipulation of Abelian and non-

Abelian anyons in topological lattice models using trapped atoms in optical lattices. Our proposal, feasible

with present technology, requires an ancilla particle which can undergo single-particle gates, be moved

close to each constituent of the lattice and undergo a simple quantum gate, and be detected.

DOI: 10.1103/PhysRevLett.101.260501 PACS numbers: 03.67.Lx, 03.65.Vf, 37.10.Jk

The quest for physical systems where anyons [1] can be
observed has concentrated so far in effectively 2dmaterials
with topological order [2]. Abelian anyons, whose inter-
change generates a nontrivial phase in the wave function,
exist in the fractional quantum Hall effect. Non-Abelian
anyons, whose interchange effects full unitary gates on the
wave function, are expected at certain filling fractions [3]
(see recent experimental progress in [4]). In spin lattice
systems, anyons can appear as low-lying excitations of
topologically ordered ground states (see, e.g., [5–7]).
Several implementations of lattice models with anyonic
excitations have been put forward [8–14]. Those involving
atoms or molecules in optical lattices are especially attrac-
tive, given recent experimental progress [15]. Specifically,
Kitaev’s honeycomb lattice model [16] can be engineered
[11,12], and anyonic interferometry in its Abelian phase
can be performed with cavity-mediated global string op-
erations [13] or using individual addressing to braid ex-
citations [17] (but due to the perturbative nature of the
effective Hamiltonian in this model, the visibility of any-
onic interferometry is degraded [13,18]).

Here we propose a novel scheme to create topologically
ordered states, generate and braid anyons, and detect their
statistics for any setup based on particles in optical lattices.
We use a lattice of particles of species A to build the
topological code and an ancilla of different species B
that can be moved independently and brought close to
any A particle to perform controlled operations on the
code [19]. Preparing the ancilla in superposition states,
making it interact with appropriate code particles, and
measuring its state, the following can be achieved: creation
of a topological state, or a general error-correcting code
(ECC); creation, braiding, and measurement (fusion) of
anyons, all operations needed to perform topological quan-
tum computation (TQC) by braiding; and anyonic interfer-
ometry, allowing direct observation of anyonic statistics.
Note that (i) by using an ancilla with different quantum
states to perform the manipulation of the anyons, tasks can

be carried out that are not possible using classical (e.g.,
laser) manipulation of anyons (without single-particle ad-
dressability, all proposed methods lack the power of ours);
(ii) there is no need in principle of single-particle address-
ability, especially to perform proof-of-principle experi-
ments; (iii) it is based on successfully demonstrated
technologies [20–22]; (iv) it is the first realistic protocol
for simulating universal TQC in an atomic, molecular,
optical system [while engineering the microscopic
Hamiltonian to build topological protection may be some
time off (though see [23]), our method works indepen-
dently of the existence of the background Hamiltonian].
We consider 2d lattices loaded with atoms or molecules,

e.g., 87Rb. The ancilla, e.g., 23Na, can be moved indepen-
dently using a laser potential not affecting Rb atoms (see
Fig. 1). These are now routinely loaded in optical lattices,
and in the Mott insulator state one can have extended
regions with one particle per site [22,24]. Single particles
can also be loaded in optical potentials and moved without
decoherence [21]. Our scheme can be extended to layered
3d configurations [25]. We first consider the toric code
Hamiltonian [5], with Abelian anyonic excitations only, as
a toy model, but our scheme is basically model-
independent; later, we apply it to the DðS3Þ quantum
double model [5], which has non-Abelian anyons and is
universal for TQC [26].
When the ancilla is brought close to a code atom, they

experience a 2-qubit unitary UZ ¼ j0iah0j � I þ j1iah1j �
Z between their internal levels (X, Y, and Z are Pauli
operators). This gate can be implemented by cold colli-
sions [27] or any other means [28,29]. Single qubit opera-
tions can be applied to the ancilla without having to
address it, due to the different level structure of code
atoms. Gates like UX ¼ j0iah0j � I þ j1iah1j � X can be
implemented by applying appropriate gates before and
after UZ. The internal ancilla state (measurement of Za)
can also be detected with standard techniques without
having to address it or affecting the code.
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We next show how to create Kitaev’s toric code [5] with
these tools. The code is defined as the ground level of a
stabilizer Hamiltonian on a square lattice of qubits, real-
ized as Rb atoms, at the edges of a square lattice. The
HamiltonianH ¼ �P

vAv �
P

pBp is the sum of mutually

commuting stabilizers Av ¼ Q
i2vXi and Bp ¼ Q

i2pZi,

where v runs over all vertices and p over plaquettes and
products involve the qubits surrounding the vertices or
plaquettes. We can associate the presence or absence of
particlelike excitations at the plaquettes (magnetic defects)
and vertices (electric defects) with the fulfillment or not of
the ground level conditions Av ¼ þ1 and Bp ¼ þ1.

Plaquette and vertex excitations are thus characterized by
Av ¼ �1 and Bp ¼ �1 and appear at the ends of strings of

Z and X operators applied on a ground state. These ‘‘par-
ticles’’ turn out to have nontrivial (anyonic) exchange
statistics due to the anticommutation of the X and Z
Pauli operators; namely, the wave function gets multiplied
by �1 when a vertex particle winds around a region con-
taining a single plaquette excitation. Detection of this
phase change is possible via interference experiments in-
volving superpositions of states with and without anyons.
Moreover, the degeneracy of the code allows one to inter-
pret it in terms of a set of logical qubits whose Z and X
operators are given in terms of chains of Z’s and X’s.

We work with a rectangular surface with smooth and
rough boundaries [25], with appropriate 3-body vertex and
plaquette operators along the boundary providing for a
two-dimensional code space: One logical qubit is encoded
as the eigenvalue of a chain of Z’s along an edge path
connecting the rough boundaries. The code space is
spanned by þ1 coeigenstates of the stabilizers. To create
a state j�i in the code, we start with a well-defined state

j0i�N (þ 1 eigenstate of each Bp) and measure the A

stabilizers sequentially, from left to right and top to bottom,
using the ancilla. If each outcome is þ1, our goal is
achieved, since j�i / Q

vð1þ AvÞj0i�N [30]. If �1 is
obtained, we can correct by applying Zb to qubit b at the
bottom of the vertex using again the ancilla, since Zbð1�
AvÞj0i�N ¼ ð1þ AvÞj0i�N; Zb is applied to a qubit that has
not been measured yet (for the last row, Zb can be applied
to the rightmost qubit). Once we have measured all vertices
and thus prepared the state, we can measure all stabilizers
to detect errors and apply error-correcting X’s or Z’s to the
corresponding qubits by using the ancilla. We could have
started at another state, measured all operators in any order,
and then corrected errors in this way to prepare the desired
state (this can be used to prepare the target state in models
beyond Kitaev’s). We now show how plaquette and vertex
measurements, as well as X’s and Z’s, are performed using
the ancilla. To measure Av, we prepare the ancilla in state
jþia / j0ia þ j1ia, move it to each qubit in the vertex, and
applyUX each time. Then we apply a Hadamard gate to the
ancilla and measure Xa. If the result is�1, we have applied
h�jQi2vUXjþi ¼ ð1� AvÞ to the qubits at the vertex, thus
performing the desired measurement. Bp is measured by

substituting UZ for UX. To apply X (Z) to a qubit, we
prepare the ancilla in state j1ia, approach it to that qubit,
and apply UX (UZ). Once the toric code state is prepared,
operations within the code are performed by applying
strings of operators, using the ancilla in state j1ia, and
applying UX or UZ sequentially on the desired qubits by
bringing them close to the ancilla. To measure string
operators, prepare the ancilla in state jþi, follow the
same sequence, and measure Xa at the end. The toric
code has two kinds of elementary excitations [5]: pairs of
anyons in frustrated vertices (electric defects, Av ¼ �1)
and in frustrated plaquettes (magnetic defects, Bp ¼ �1),

with mutual Abelian anyonic statistics. They can be cre-
ated by applying Z or X to a given qubit and can be moved,
braided, and fused together by applying these operators
along a given path using the ancilla. Superpositions of
states with and without vortices, or where they are in
different places (see Fig. 2), can be created, allowing one
to observe fractional statistics: The simplest interference
experiment is shown in Fig. 3. On how to infer anyonic
statistics from interference experiments, see [31].
We now outline the preparation and manipulation of

anyons in a non-Abelian setting universal for quantum
computation [26]: the quantum double model DðS3Þ based
on the group of permutations of three elements S3 [5] (see a
brief discussion in [31]; the full construction will be fully
given in [32]). It is a lattice model generalizing the toric
code, where local degrees of freedom live at the (oriented)
edges of the lattice with orthonormal bases fjgig are labeled
by the six group elements g 2 S3. The Hamiltonian, also
of the form H ¼ �P

vAv �P
pBp, has commuting vertex

and plaquette stabilizers imposing constraints on the
ground states. Their violation define particlelike excita-

FIG. 1 (color online). 2d optical lattice in the x� y plane
loaded with one atom per site. Atoms are in different Zeeman
levels j0i and j1i in their ground electronic state, storing quan-
tum information. An ancillary atom of a different species in its
electronic ground state, with relevant Zeeman levels j0ia and
j1ia, is trapped using laser standing waves along the three
directions. Lasers in the x� y plane are far detuned from the
fine structure splitting: The potential controlling horizontal
movement of the ancilla does not depend on its internal state.
The laser propagating along the z direction is tuned in between
the fine-split excited P levels: The potential controlling the
vertical movement depends on the internal state [27,28].
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tions (anyons) with topological charges (electric, mag-
netic, and dyonic), with non-Abelian fusion and braiding
rules. Creation, transport, and fusion of anyons can be
achieved generalizing the controlled-NOT operations of
the toric code to controlled left and right group multi-

plications: UL;R
h ¼ j0iBh0j � IA þ j1iBh1j � ð�L;R

h ÞA, with
�L

h jgi ¼ jhgi,�R
h jgi ¼ jghi. The local degrees of freedom

for the DðS3Þ model are qudits of six dimensions, and their
six basis elements can be encoded into ground electronic

hyperfine states of an alkali atom with enough levels, used
as code lattice A. To create, transport, and fuse pure
electric and magnetic charge states (enough to simulate
universal TQC [26]), a 6-state ancilla species B is espe-
cially appropriate (see Fig. 4). As in the toric code, vertex
operators can be measured using ancilla-assisted opera-
tions to prepare the ground state (see [31]). With one single
ancilla, which need not be spatially addressed, our algo-
rithm requires OðnmÞ steps in an n�m region; with an
auxiliary lattice with one ancilla per face of the code
lattice, assuming addressability, it can be parallelized to
depth OðnþmÞ (essentially optimal [33]; see [31]).
This scheme is independent of the method used to con-

struct the topological state. It can be built by cooling an
atomic ensemble interacting via an engineered topological
Hamiltonian, providing in principle topological protection
to the code except for anyonic manipulations, which
should take the system to excited levels in a controlled
way (as needed to perform TQC as such; on how to
simulate relevant Hamiltonians, see [11,12]). But it can
also be constructed by the above procedure using ancillas
to impose stabilizer constraints, enough to perform proof-
of-principle interference experiments, a worthy goal by
itself. This also allows fault-tolerant quantum computation
with general ECCs (topological codes are excellent ECCs;
local operators do not mix topological sectors, and string
operators mixing them can be efficiently implemented).
The arrangement of ancillas is flexible. One ancilla,

individually manipulable [21], suffices in principle.
Varying degrees of parallelization are possible: The ground
state can be constructed with sequential operations on one
column of the sample (parallel to smooth boundaries) at a
time, so as to cover the whole sample; in interferometry,
commuting operations can be done simultaneously; some
parallelization can be introduced with a coarser optical
potential for the ancilla than for the code.

FIG. 3 (color online). Minimal interferometry experiment for
the toric code. Top: Ancilla A1, initialized as j1i, uncondition-
ally creates a pair E1, E2 of electric defects at neighboring
vertices by application of UZ ¼ j0ih0j � Iþ j1ih1j � Z.
Ancilla A2, initialized as jþi, creates a superposition of the
presence and the absence of two magnetic defects M1 and M2 at
neighboring plaquettes by application of UX. Bottom: M1 is
wound around E2 by sequential UX interaction of ancilla A2
with the code atoms surrounding E2. M1 and M2 are eventually
reannihilated, bringing both sectors to the ground state with a
relative minus sign: jGSicode � j1iA1 � j�iA2; i.e., a phase �1 is
generated in the sector where braiding of defects takes place. In
this case, the interferometry results can be read from the ancilla
lattice by a local projective measurement on A2.

〉
〉

〉

〉
〉

〉

〉
〉

〉

〉
〉

〉〉

FIG. 4 (color online). Level structure for the DðS3Þmodel. The
elements of S3 are encoded into ground electronic hyperfine
states of a trapped alkali atom A (87Rb or 23Na, with 8 levels, or
133Cs, with 16 levels). A 6-state ancilla B of a different species is
used to control operations. Ancilla states can be moved inde-
pendently: Bringing jeiB close to a code atom A and coupling it
to jeiA, a collisional phase gate Ze ¼ IA � IB � 2jeiB �
hej � jeiAhej is obtained; together with simultaneous 1-particle
operations V all A ¼ N

AvA on the code, it provides all con-
trolled operations. Indeed, V y

all AZeV all A yields controlled

phase gates for any code state with vA ¼ jgiAhej þ jeiAhgj and
transpositions with vA / ðjei þ jgiÞAhej þ ðjei � jgiÞAhgj (these
can be composed to obtain any controlled group multiplication).

FIG. 2 (color online). Top: Creation of a superposition of the
vacuum and a pair of magnetic defects. On top of the ground
state (code atoms shown as light circles), an ancilla (dark) is
initialized as jþi and brought close to a code atom, effecting
UX ¼ j0ih0j � I þ j1ih1j � X and creating two magnetic defects
(big blobs) in the adjacent plaquettes in the superposition com-
ponent where the ancilla is in state j1i, while the code remains in
the ground state in sector j0i. Bottom: Anyon transport. The
ancilla interacts via UX with a code atom between a plaquette
satisfying the ground state condition and one of the plaquettes
containing a magnetic defect in a superposition sector, trans-
ferring the anyon to the first plaquette.
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This method shares common problems of optical lattice
schemes of quantum computation, in particular, spontane-
ous emission. Essentially, only the vertical direction of the
ancilla is close to resonance; lifetimes of seconds can be
reached by tuning the laser between the fine structure
levels and can be enhanced by restricting manipulation of
the vertical dynamics to the (short) times the ancilla is
close to a code atom. The ancilla can be repumped after an
operation, allowing one to repeat the tasks and detect
errors. Controlled logic by cold collisions [27] requires
cooling the system to the physical ground state, possible
for both the code (in the 1st Bloch band, the ground state of
the local potential) and the ancilla. Rydberg gates [28,29]
based on dipole-dipole interactions eliminate this condi-
tion. Ancilla-code interactions must break the code in a
controlled way, not creating (superpositions of) stray any-
ons spoiling the quantum memory: Theoretical analysis
[34] and experimental results [35] suggest that excellent
control and small decoherence rates are achievable. Then
the implementation benefits from the added protection of
topological codes (or, in general, ECCs). With a bias
magnetic field, arbitrary single qudit unitaries can be real-
ized using frequency and polarization selectivity of micro-
wave or Raman laser pulses. Collisional gates can be
realized using trap-induced shape resonances [36] or using
Raman pulses to map code and ancilla ground states (jeiA;B
in Fig. 4) to a vibrational excited state of each lattice well,
evolving by a collisional phase and mapping back [37].

The experimental techniques required by our method are
(i) independent trapping of two particle species A and B
with different laser potentials; (ii) diluting the population
of species B so that each particle is individually address-
able; (iii) bringing species A to a Mott insulator phase;
(iv) initialization of species A in a product state j0i�N;
(v) single-particle gates on species B; (vi) simultaneous
gates on all particles of species A; (vii) independent trans-
port of internal states of single particles of species B so as
to effect cold collisions with particles of species A.
Additionally, large scale simulations would require the
ability to recool to vibrational states. Each one of these
techniques has been demonstrated experimentally; bring-
ing them together will pose an interesting experimental
challenge.

A method based on an ancilla species thus allows one to
perform all TQC tasks on a given topological state, inde-
pendently of the way in which this state is constructed, in
optical lattices; e.g., universal TQC based on braiding can
be performed on top of the ground state of the DðS3Þ
model. This scheme is likely to prove the most practical
and general way to perform TQC in optical lattices. Large
computations will face a steep scaling (a problem not
exclusive of topological settings), but observing interfer-
ence phenomena and applying gates by anyon braiding is
feasible with today’s technology. This method can also be
used advantageously in general ECCs.
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