Multimode fibre: a pathway towards deep tissue fluorescence microscopy

Martin Plöschner*a,b, Tomáš Tycc, Tomáš Čižmára

aSchool of Engineering, Physics and Mathematics, College of Art, Science & Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK; bDepartment of Physics and Astronomy, School of Physics and Engineering, Macquarie University, North Ryde, NSW, 2109, Australia; cDepartment of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic

*martin.ploschner@mq.edu.au

ABSTRACT

Fluorescence microscopy has emerged as a pivotal platform for imaging in the life sciences. In recent years, the overwhelming success of its different modalities has been accompanied by various efforts to carry out imaging deeper inside living tissues. A key challenge of these efforts is to overcome scattering and absorption of light in such environments. Multiple strategies (e.g. multi-photon, wavefront correction techniques) extended the penetration depth to the current state-of-the-art of about 1000μm at the resolution of approximately 1μm. The only viable strategy for imaging deeper than this is by employing a fibre bundle based endoscope. However, such devices lack resolution and have a significant footprint (1mm in diameter), which prohibits their use in studies involving tissues deep in live animals. We have recently demonstrated a radically new approach that delivers the light in/out of place of interest through an extremely thin (tens of microns in diameter) cylindrical glass tube called a multimode optical fibre (MMF). Not only is this type of delivery much less invasive compared to fibre bundle technology, it also enables higher resolution and has the ability to image at any plane behind the fibre without any auxiliary optics. The two most important limitations of this exciting technology are (i) the lack of bending flexibility and (ii) high demands on computational power, making the performance of such systems slow. We will discuss how to overcome these limitations.

Keywords: multimode optical fibre, digital holography, fluorescence microscopy, micro-endoscopy, wavefront shaping

1. INTRODUCTION

Research in life sciences increasingly relies on obtaining high spatial resolution information from systems and processes that are deep inside biological tissues 1. This represents a major obstacle as most if not all modern imaging techniques fall into three categories - high resolution with very limited penetration depth 2, standard resolution with average penetration depth 3 or low resolution with exceptional penetration depth 4 - none of which are able to observe sub-cellular systems deeper than few millimetres. In recent years, multimode fibre (MMF) based endoscopes presented a possible solution to this problem. As opposed to bulky single mode fibre bundles, MMFs are thin and as such cause minimum mechanical damage upon insertion. Both imaging 5-10 and micromanipulation 11,12 techniques were demonstrated and showed great promise of the technology. The applications are based on the realisation that the input and output optical fields are related through the transformation matrix of the fibre. With the knowledge of the transformation matrix one can design an input field such that a desired output field is displayed at the other end of the fibre (beam-shaping) 12 and vice versa, one can use inverse transformation to realise imaging with the fiber 6. Both applications are realised using a hologram on a Spatial Light Modulator (SLM).

The two most important limitations of this exciting technology are (i) high demands on computational power, making the performance of such systems slow and (ii) the lack of bending flexibility. We will discuss how to overcome these limitations.
2. ULTRA-FAST BEAM SHAPING AT THE OUTPUT FACET OF MULTIMODE OPTICAL FIBRE

In the following we focus our attention on the ability to shape the light at the output facet of the fibre. The hologram generation procedure for arbitrary output field is computationally very intensive, which, until recently, restricted the fibre-based manipulation and potential structured illumination imaging techniques to pre-calculated holograms. Our previously published system13 dealt with the computational needs by harnessing the parallel power of modern GPUs and allowed real-time beam-shaping in multimode fibers. The system was capable of displaying on-demand oriented cube, made out of 120 points, at the distal end of the fiber at the refresh rate of 50 Hz. However, the key element of the system was an Acousto-Optic Deflector (AOD) that produced points at the distal end of the fiber in time-discrete intervals. The time-discretization of points removes the interference (present due to non-orthogonality of output points12) but also significantly increases system complexity due to the presence of an AOD. Furthermore, only a limited number of points (120) was used for the output pattern as the fibre input fields would start to overlap in the SLM Fourier space for larger number of AOD deflections.

Here, we present a significantly simplified and improved system without the added AOD complexity. We remove the undesired interference effects computationally using the GPU accelerated Gerchberg-Saxton (GS) and Yang-Gu (YG) algorithms. The algorithms were previously implemented on a CPU platform12 restricting the use of the technology to the pre-calculated holograms. The GPU implementation is two orders of magnitude faster than the CPU implementation allowing video-rate image control at the distal end of the fiber virtually free of interference effects.

Figure 1 shows the experimental setup used to realise AOD-free light-shaping at the end of M\textsubscript{MF}. The system is used to measure the transformation matrix of the fibre, which is then used for subsequent beam-shaping. We have used a modified version of Yang-Gu and Gerchberg-Saxton algorithms13,14 and implemented the hologram generation on a GPU platform, which allows for massive parallelization of complex computations involved. This allowed real-time beam-shaping (target refresh rate of more than 50 Hz) for complex output patterns at the end of the fibre.

3. BENDING DYNAMICS OF MULTIMODE FIBRE

The transformation matrix of the fibre is valid only for conformation of the fibre for which it was measured. Any changes in conformation of the fibre, such as bending, will lead to change of transformation matrix of the fibre and subsequent loss of imaging capability. We have recently shown15, that it is possible to predict transformation matrix of the bent fibre from the transformation matrix of the straight fibre. This removes the necessity to empirically measure the transformation matrix every time the fibre conformation is changed, and also without the need to access the distal end of the fibre.
Figure 1. Linearly polarised light (CrystaLaser CL532-075-S) passes through half-wave plate and optical isolator (Thorlabs IO-3-532-LP). This configuration prevents back reflections into the laser and at the same time allows control of power in the system. The second half-wave plate together with the polarising beam splitter was used to control the splitting of power between the two fiber coupling optical pathways. The optimal coupling into the Polarisation Maintaining Fiber (PMF) (Thorlabs P1-488PM-FC-2) was achieved by using $L_1 = 100$ mm plano-convex lens and $L_2 = 8$ mm aspheric lens. Coupling into the single-mode fiber (SMF) (Thorlabs P1-405B-FC-5) was realised using a dielectric mirror M_1 and aspheric lens $L_3 = 8$ mm. Both SMF and PMF were cleaved at the coupling site at an angle of approximately 10 degrees to remove the power oscillations in the system due to SMF and PMF acting like resonators. Without the angled cleave, the optical power in the system oscillated on average by 10 percent making the measurement of the transformation matrix inaccurate. The output polarisation of PMF was aligned with the polarisation axis of the SLM (BNS HSPDM512-(480-540mm)-DVI) and the light was collimated onto the SLM by $L_4 = 60$ mm. The light from the SLM passed through $L_5 = 100$ mm and all the light except the first order was filtered on the iris. Telescope consisting of lenses $L_6 = 50$ mm and $L_7 = 8$ mm, yielding a slightly higher NA than the NA of the MMF (Thorlabs FG050UGA), was used for the coupling into the MMF. The quarter-wave plate transformed the linearly polarised light into circularly polarised light. This step ensures that the input field is decomposed into real-eigenmodes of the straight fiber, which then propagate through the fiber without coupling into other polarisation. The selected mode-basis works also very well for bended fibers, but the larger the bending the stronger the coupling to the opposite circular polarisation modes, which ultimately leads to stronger background noise during beam-shaping. Light exiting the MMF was collected by a microscope objective (MO) (Olympus PlanN 20x/0.40) and the circularly polarised light was transformed back to a linearly polarised light using another quarter-wave plate. The light was then re-combined with the collimated output $L_8 = 8$ mm from SMF on the non-polarising beam splitter (NPBS). Lens $L_9 = 150$ mm was used to image the pattern resulting from interference of SMF reference and MMF beam. CCD (Basler piA640-210gm) was used for transformation matrix measurement. SMF beam was blocked for subsequent beam-shaping applications.
Figure 2a shows bending configurations of the fibre that we have tested. Figures 2b shows the theoretically predicted change of phase of the fibre eigenmodes (plotted in the mode pyramid used in15) due to bending and Figure 2c shows the same for experimentally measured phase changes. The two clearly match each other. This means that the changes in transformation matrix can be theoretically predicted by simply observing the configuration of the fibre. For more details on how we calculated the phase change of the modes in bent fibre, please see the supplementary information in15.

The imaging of USAF 1951 target for the maximally bent fibre (case V in Figure 2a) is clearly not optimal as can be seen on Figure 3a. But after applying the theoretical correction to transformation matrix, the imaging quality is significantly improved (Figure 3b).

![Figure 2. (a) Fibre conformations tested. (b) Bending of the fibre changes phase of the output eigenmodes (especially those with low orbital angular momentum value) (theoretical prediction of the output phases); (c) experimentally measured change of phase of fibre output eigenmodes. The comparison shows a very good agreement between theory and experiment.](image-url)
Figure 3. (a) Imaging of the USAF 1951 target using the bent fibre (conformation V from Figure 2a) and empirically measured matrix for the straight fibre. (b) Imaging using the same bent fibre with the empirically measured matrix of the straight fibre, however, this time with theoretical corrections to eigenmode phases included.

REFERENCES

Micro+Nano Materials, Devices, and Systems

Benjamin J. Eggleton
Stefano Palomba
Editors

6–9 December 2015
Sydney, Australia

Sponsored by
The University of Sydney (Australia)
CUDOS—An ARC Centre of Excellence (Australia)

Cosponsored by
NSW Government Trade and Investment (Australia)
AOS—The Australian Optical Society (Australia)
Office of Naval Research Global (United States)
U.S. Army Research, Development and Engineering Command (United States)

Published by
SPIE

Volume 9668
Contents

ix Author Index

xiii Conference Committee

xvii Introduction

MICRO/NANOFLUIDICS AND OPTOFLUIDICS I

9668 0D Thermoset polyester-based superhydrophobic microchannels for nanofluid heat transfer applications [9668-10]

PHOTONICS I

9668 0F Fabrication and optical characterisation of InGaN/GaN nanorods [9668-12]
9668 0H Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation [9668-14]
9668 0I Mid-infrared silicon pillar waveguides [9668-15]

NANOSTRUCTURED MATERIALS II

9668 0L Mesoscopic effects in discretised metamaterial spheres [9668-18]
9668 0O Dynamic control of THz waves through thin-film transistor metamaterials [9668-21]
9668 0T Relative humidity sensing using dye-doped polymer thin-films on metal substrates [9668-27]

MICRO/NANOFLUIDICS AND OPTOFLUIDICS II

9668 0V Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes [9668-29]
9668 0W Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models [9668-30]
9668 0X Printed circuit boards as platform for disposable lab-on-a-chip applications [9668-31]
9668 0Y Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip system [9668-32]
9668 0Z 3D printed polymers toxicity profiling: a caution for biodevice applications [9668-33]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab-on-chip platform for circulating tumor cells isolation</td>
<td>9668-34</td>
<td></td>
</tr>
<tr>
<td>Bubble-induced acoustic mixing in a microfluidic device</td>
<td>9668-36</td>
<td></td>
</tr>
<tr>
<td>Automation of Daptoxkit-F biotest using a microfluidic lab-on-a-chip technology</td>
<td>9668-37</td>
<td></td>
</tr>
</tbody>
</table>

PHOTONICS II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage monitoring using fiber optic sensors and by analysing electro-mechanical admittance signatures obtained from piezo sensor</td>
<td>9668-41</td>
<td></td>
</tr>
<tr>
<td>Electron-beam induced diamond-like-carbon passivation of plasmonic devices</td>
<td>9668-42</td>
<td></td>
</tr>
<tr>
<td>Tunable microwave notch filter created by stimulated Brillouin scattering in a silicon chip</td>
<td>9668-44</td>
<td></td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of BMITFSI to the electrical properties of methycellulose/chitosan/NH4TF-based polymer electrolyte</td>
<td>9668-158</td>
<td></td>
</tr>
<tr>
<td>Fabrication and optical characterization of a 2D metal periodic grating structure for cold filter application</td>
<td>9668-166</td>
<td></td>
</tr>
<tr>
<td>Illumination dependent carrier dynamics of CH3NH3PbBr3 perovskite</td>
<td>9668-168</td>
<td></td>
</tr>
<tr>
<td>Dynamic evaluation and control of blood clotting using a microfluidic platform for high-throughput diagnostics</td>
<td>9668-171</td>
<td></td>
</tr>
<tr>
<td>Testing organic toxicants on biomicrofluidic devices: why polymeric substrata can lead you into trouble</td>
<td>9668-175</td>
<td></td>
</tr>
<tr>
<td>Evaluation of additive element to improve PZT piezoelectricity by using first-principles calculation</td>
<td>9668-177</td>
<td></td>
</tr>
<tr>
<td>Resonance breakdown of dielectric resonator antennas on ground plane at visible frequencies</td>
<td>9668-179</td>
<td></td>
</tr>
<tr>
<td>Calculation of the dynamic characteristics of micro-mirror element based on thermal micro-actuators</td>
<td>9668-182</td>
<td></td>
</tr>
<tr>
<td>Efficient butt-coupling of surface plasmons on a silver-air interface</td>
<td>9668-183</td>
<td></td>
</tr>
<tr>
<td>Development of functional nano-particle layer for highly efficient OLED</td>
<td>9668-188</td>
<td></td>
</tr>
<tr>
<td>Misalignment tolerant efficient inverse taper coupler for silicon waveguide</td>
<td>9668-190</td>
<td></td>
</tr>
</tbody>
</table>
Design and simulation of piezoelectric PZT micro-actuators with integrated piezoresistive displacement sensors for micro-optics applications [9668-191]

Surface plasmon interference lithography using Al grating structure on glass [9668-192]

Preparation and imaging performance of nanoparticulated LuPO₄:Eu semitransparent films under x-ray radiation [9668-196]

Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation [9668-198]

Development of myoelectric control type speaking valve with low flow resistance [9668-203]

Luminescent solar concentrator improvement by stimulated emission [9668-208]

Investigation of emission properties of vacuum diodes with nanodiamond-graphite emitters [9668-209]

Hollow silicon microneedle array based trans-epidermal antiemetic patch for efficient management of chemotherapy induced nausea and vomiting [9668-214]

A homeostatic, chip-based platform for zebrafish larvae immobilization and long-term imaging [9668-174]

Quantum plasmonics for next-generation optical and sensing technologies [9668-216]

Evaluation of zinc oxide nano-microtetrapods for biomolecule sensing applications [9668-55]

2D materials for nanophotonic devices (Invited Paper) [9668-56]

Some minding about the creation of multi-spectrum passive terahertz imaging system [9668-61]

Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes (Invited Paper) [9668-70]
NANOSTRUCTURED MATERIALS IV

9668 3O	Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics [9668-74]
9668 3P	Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector [9668-75]
9668 3R	Optical properties of arrays of five-pointed nanostars [9668-77]
9668 3S	Plasmonic response in nanoporous metal: dependence on network topology [9668-78]
9668 3U	Graphene nano-ribbon with nano-breaks as efficient thermoelectric device [9668-80]
9668 3V	Modeling of graphene nanoscroll conductance with quantum capacitance effect [9668-81]

NANOPHOTONICS FOR BIOLOGY AND MEDICAL APPLICATIONS II

9668 3Y	Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo [9668-84]
9668 3Z	A wirelessly powered microspectrometer for neural probe-pin device [9668-85]
9668 40	Multimode fibres: a pathway towards deep tissue fluorescence microscopy [9668-86]
9668 42	Optical parameter measurement of highly diffusive tissue body phantoms with specially designed sample holder for photo diagnostic and PDT applications [9668-88]

SOLAR CELL TECHNOLOGIES

9668 43	Improved properties of phosphor-filled luminescent down-shifting layers: reduced scattering, optical model, and optimization for PV application [9668-90]
9668 46	Nanostructured metallic rear reflectors for thin solar cells: balancing parasitic absorption in metal and large-angle scattering [9668-93]
9668 47	Novel plasmonic materials to improve thin film solar cells efficiency [9668-94]
9668 48	Ultrafast charge generation and relaxation dynamics in methylammonium lead bromide perovskites [9668-95]
9668 49	Nanosphere lithography for improved absorption in thin crystalline silicon solar cells [9668-97]

BIOCOMPATIBLE MATERIALS I

| 9668 4G | Acellular organ scaffolds for tumor tissue engineering [9668-102] |
PLASMONICS I

- **9668 4L** Sub-wavelength Si-based plasmonic light emitting tunnel junction [9668-107]

FABRICATION I

- **9668 4T** Nano-engineered flexible pH sensor for point-of-care urease detection [9668-210]
- **9668 4U** Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever [9668-115]
- **9668 4W** CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application [9668-143]

MEDICAL AND BIOLOGICAL MICRO/NANODEVICES

- **9668 50** A temperature-compensated optical fiber force sensor for minimally invasive surgeries [9668-154]
- **9668 52** Liquid marble as microbioreactor for bioengineering applications [9668-149]
- **9668 53** Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare [9668-219]

PLASMONICS II

- **9668 57** Transforming polarisation to wavelength via two-colour quantum dot plasmonic enhancement [9668-128]
- **9668 5B** Plasmonic nano-resonator enhanced one-photon luminescence from single gold nanorods [9668-133]
- **9668 5C** Plasmon resonances on opto-capacitive nanostructures [9668-134]

FABRICATION II

- **9668 5J** Spectroscopic behavior in whispering-gallery modes by edge formation of printed microdisk lasers [9668-119]
- **9668 5O** Optical properties of refractory TiN, AlN and (Ti,Al)N coatings [9668-144]
- **9668 5P** Optimisation of Schottky electrode geometry [9668-141]
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9668 5Q</td>
<td>Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification</td>
<td>[9668-151]</td>
</tr>
<tr>
<td>9668 5R</td>
<td>Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation</td>
<td>[9668-104]</td>
</tr>
<tr>
<td>9668 5S</td>
<td>Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses</td>
<td>[9668-105]</td>
</tr>
<tr>
<td>9668 5T</td>
<td>Wafer-scale epitaxial graphene on SiC for sensing applications</td>
<td>[9668-122]</td>
</tr>
<tr>
<td>9668 5U</td>
<td>Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes</td>
<td>[9668-123]</td>
</tr>
<tr>
<td>9668 5V</td>
<td>Controlled deposition of plasma activated coatings on zirconium substrates</td>
<td>[9668-124]</td>
</tr>
<tr>
<td>9668 5W</td>
<td>Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid</td>
<td>[9668-224]</td>
</tr>
</tbody>
</table>

BioCOMPATIBLE MATERIALS II
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbey, Brian, 17
Afshar, Shahraam V., 3J
Aghili, Sina, 5W
Akhavan, Behnam, 5V
Alomeh, K., 10, 4T
Al-Ditini, Feras, 3U
Alhasan, Layla, 52
Ali, Amer, 5T
Alnassar, Mohammad Saleh N., 5P
Annamdas, Venu Gopal Madhav, 16
Anwar, S., 42
Appelt, Christian, 0F
Arbatan, Tina, 52
Argyros, Alexander, 2S
Arifin, N. A., 1J
Arnold, Matthew D., 3S, 5C, 5O
Asundi, Anand, 16
Atakaramians, Shaghik, 0H, 3J
Bagnall, Darren M., 49
Bakas, A., 2H
Balaur, Eugeniu, 17
Batentschuk, Miroslaw, 43
Best, Michael, 12
Bilek, Marcela, 5R, 5V
Bilokur, M., 5O
Bilokur, M., 5O
Blaikie, Richard, 0T
Boretti, A., 47
Bolten, Lindsay C., 24
Brabec, Christoph J., 43
Brodie, N., 50
Cartlidge, Rhys, 1W
Casas-Bedoya, A., 19
Castelletto, S., 47
Chan, Peggy P. Y., 52
Chang, Yuanchih, 49
Chen, Cong, 5J
Chen, H., 50
Chen, Huaying, 12
Chen, Sheng, 1R
Chen, Ssu-Han, 2B, 2C
Chen, Weiijian, 0F
Cheng, Yujing, 5B
Cherukhin, Yuriy, 38
Choi, Haechul, 29
Choi, Kyung Cheol, 2D
Choi, Sang H., 32
Choi, Yoonseuk, 29
Christiansen, Sille, 0F
Chung, Chia-Yang, 0D
Čižmár, Tomáš, 40
Collis, Gavin E., 3O
Combariza, Miguel E., 1U
Conibeer, Gavin, 0F
Cortie, Michael B., 3R, 3S, 5C, 5O
Cousins, Aidan, 5Q
Crisostomo, Felipe, 3P
Dai, Xi, 0F
Davies, Michael, 5R
Davis, Timothy J., 57
de Sterke, C. Martijn, 24
Deng, Xiaofan, 48
Denisov, Alexander, 3B
Ding, Boyang, 0T
Disney, Claire E. R., 46
Dowd, A., SC
Egileton, Benjamin J., 01, 19
Evans, Robin, 4W
Evstafyev, Sergey S., 23
Feng, Yu, 0F
Firdous, S., 42
Fisher, Caitlin, 24
Fleming, Simon, 2S
Fooladmand, M., 10
Forberich, Karen, 43
Fountos, G., 2H
Friedrich, Timo, 02, 2Y
Fritzsche, Wolfgang, 0X
Fumeaux, Christophe, 20
Gali, Marc A., 3S
Gao, Xiaofang, 0W
Gentle, Angus R., 3S, 5O
Goktas, Hasan, 4L
Goldys, Ewa, 0X, 3Y
Gong, Qihuang, 5B
Gornev, E. S., 2T
Gray, E., 10
Grebenik, Ekaterina, 3Y
Green, Martin A., 1R, 46, 48
Guller, Anna, 3Y, 4G
Harada, Takaoki, 48
Harriz, Alex, 53
He, Yingbo, 5B
Heilmann, Martin, 0F
Henning, Anna M., 5Q
Hewakuruppu, Yasitha L., 3P
Hiramatsu, Kazumasa, 1Q
Hjerrild, Natasha, 3P
Ho-Baillie, Anita, 1R, 48
Holland, Anthony S., 5P
Hossain, Faruque M., 3U
Hossain, Md Sharafat, 3U
Howard, Douglas, 5Q
Huang, Shujuan, 0F, 1R, 48
Huang, Yushi, 0Y, 13, 1W
Hudson, Darren D., 0I
Huynh, Duc H., 4W
Iakovlev, Timur, 5T
Inglis, David, 0X
Ismail, Razali, 3V
Ivanov, Ivan G., 5T
Jagadish, Chennupati, 0O
Jain, Sanika, 52
James, Timothy D., 57
Jiang, Liming, 3U
Kalivas, N., 2H
Kandarakis, I., 2H
Kar, Mikael, 33, 5T
Kaslin, Janet, 0Z, 2Y
Khaledian, Mohsen, 3V
Kharbikar, Bhushan N., 2W
Khiar, A. S. A., 1J
Kim, Min Hyuck, 3Z
Kim, Min-Hoi, 29
Kimmel, F. R., 2W
Klyushin, I., 2H
Ko, Masanori, 1Q
Kivshar, Yuri S., 3J
Kondurini, Alexey, 5R
Korobova, Natalia E., 23
Korsunsky, Alexander M., 5S
Kou, Shan Shan, 17
K., Shin, 2W
Ko, T., Janez, 43
Kuhlmey, Boris T., 0H
Kumar S., Harish, 2W
Kumari, Madhuri, 0T
Kurkov, Alexander, 4G
Kwok, Chee Yee, 2B, 2C
Lan, Shengchang, 3B
Langley, Daniel, 17
Lapine, Mikhail, 0L
Latzel, Michael, 0F
Lee, Jae-Hyun, 29
Lee, Uhn, 32
Lei, Wenwen, 0V
Leiterer, Christian, 0X
Li, Haisu, 0H
Li, Jinfeng, 5J
Li, Qiyuan, 3P
Liang, Luen, 3Y
Lin, Jiao, 17
Lipovsek, Benjamin, 43
Liu, Hao, 3B
Lu, Guowei, 5B
Lu, Hai, 0O
Lu, Yiqing, 3Y
Lu, Yuerui, 34
Lunt, Alexander J., 5S
Luong, Stanley, 5P
MacQueen, Rowan W., 25
Maheshwari, Muneeesh, 16
Marpang, David, 19
Marshall, B. J., 4T
Mauvy, D. K., 10, 4T
Mawatari, Kazuma, 0W
McKenzie, David R., 0V, 5R
McPhedran, Ross C., 0L, 24
Mehmood, Nasir, 53
Mehdi, Mohsen, 5S
Michlfer, Johann, 5S
Mimaki, Shinya, 2N
Miroshnichenko, Andrei E., 3J
Mitchell, Aman, 1U
Miyake, Hirotoshi, 1Q
Mo, Z., 50
Moaied, Mahdi, 22
Mohanty, Gaurav, 5S
Monro, Tanya M., 3J
Morita, Y., 4U
Morrison, Blair, 19
Morrison, Karl, 3P
Motogaito, Atsushi, 1Q
Mulvaney, Paul, 57
Nadort, Annemarie, 3Y
Nakamachi, E., 4U
Nawaz, M., 42
Nelson, Melanie R. M., 5Q
Nevo, T., 5S
Nebel, Warwick, 1U
Nguyen, Phuong D., 4W
Nguyen, Thanh C., 4W
Nose, Ali Arasteh, 5W
Noor, N. A. M., 5U
Nugegoda, Dayanthi, 0Y, 13, 1W
Oki, Juji, 5J
Ooe, Katsutoshi, 2N
Orlov, S. N., 2T
Ostrikov, Kostya (Ken), 2Z
Ozawa, Masaaki, 5J
Pagani, Mattia, 19
Panayiotakis, G. S., 2H
Pang, John Hock Lye, 16
Payne, David H. R., 49
Pei, Jiajie, 34
Petersen, Elena, 4G
Pektovic-Duran, Karolina, 12
Pilati, Supriya, 46, 49
Plössner, Martin, 40
Pocock, Kyall J., 0W
Pollard, Michael E., 49
Poulton, Christopher G., 0L, 24
Prestidge, Clive A., 0W
Priest, Craig, 0W

Proc. of SPIE Vol. 9668 966801-10
Conference Committee

Conference Chair

Benjamin J. Eggleton, The University of Sydney (Australia)

Conference Co-chair

Stefano Palomba, The University of Sydney (Australia)

Conference Program Committee

Brian Abbey, La Trobe University (Australia)
Andrea M. Armani, The University of Southern California (United States)
Marcela M. M. Bilek, The University of Sydney (Australia)
Alvaro Casas Bedoya, The University of Sydney (Australia)
Peggy P. Y. Chan, RMIT University (Australia)
Wenlong Cheng, Monash University (Australia)
C. Martijn de Sterke, The University of Sydney (Australia)
James Friend, University of California, San Diego (United States)
Ewa M. Goldys, Macquarie University (Australia)
Daniel E. Gomez, Commonwealth Scientific and Industrial Research Organisation (Australia)
Min Gu, Swinburne University of Technology (Australia)
Stefan Harrer, IBM Research Collaboratory for Life Sciences-Melbourne (Australia)
Stephen Holler, Fordham University (United States)
Baohua Jia, Swinburne University of Technology (Australia)
Saulius Juodzakis, Swinburne University of Technology (Australia)
Adrian Keating, The University of Western Australia (Australia)
Dwayne D Kirk, Melbourne Center for Nanofabrication (Australia)
Alexander M. Korsunsky, University of Oxford (United Kingdom)
Zdenka Kuncic, The University of Sydney (Australia)
Gareth F. Moorhead, Commonwealth Scientific and Industrial Research Organisation (Australia)
David Moss, RMIT University (Australia)
Dragomir N. Neshev, The Australian National University (Australia)
Fiorenzo Gabriele Omenetto, Tufts University (United States)
Kostya Ostrikov, Commonwealth Scientific and Industrial Research Organisation (Australia)
Rupert F. Oulton, Imperial College London (United Kingdom)
Min Qiu, Zhejiang University (China)
David D. Sampson, The University of Western Australia (Australia)
Cather M. Simpson, The University of Auckland (New Zealand)
Volker J. Sorger, The George Washington University (United States)
Din Ping Tsai, Academia Sinica (Taiwan)
Niek F. Van Hulst, ICFO - Institut de Ciències Fotòniques (Spain)
Frédérique Vanholsbeeck, The University of Auckland (New Zealand)
Seok-Hyun Yun, Harvard Medical School (United States)
Yonggang Zhu, Commonwealth Scientific and Industrial Research Organisation (Australia)

Session Chairs

1A Nanostructured Materials I
 Ann Roberts, The University of Melbourne (Australia)

1B Micro/Nanofluidics and Optofluidics I
 Warwick P. Bowen, The University of Queensland (Australia)

1C Photonics I
 Justin J. Cooper-White, The University of Queensland (Australia)

2A Nanostructured Materials II
 Yuri S. Kivshar, The Australian National University (Australia)
 Mikhail Lapine, University of Technology, Sydney (Australia)

2B Micro/Nanofluidics and Optofluidics II
 Hywel Morgan, University of Southampton (United Kingdom)
 Neetesh Singh, The University of Sydney (Australia)

2C Photonics II
 Isabelle Staude, Friedrich-Schiller University (Germany)
 Antony Orth, RMIT University (Australia)

3A Nanostructured Materials III
 Frank Vollmer, Max-Planck-Institut für die Physik des Lichts (Germany)
 Volker J. Sorger, The George Washington University (United States)

3B Nanophotonics for Biology and Medical Applications I
 Krasimir Vasiliev, University of South Australia (Australia)
 Prineha Narang, California Institute of Technology (United States)

3C Photonics III
 Igal Brener, Sandia National Labs (United States)
 Christian Wolff, University of Technology, Sydney (Australia)
4A Nanostructured Materials IV
 Kenneth B. Crozier, Harvard School of Engineering and Applied Sciences (United States)
 Haisu Li, The University of Sydney (Australia)

4B Nanophotonics for Biology and Medical Applications II
 Baohua Jia, Swinburne University of Technology (Australia)

4C Solar Cell Technologies
 Diana Antonosyan, The Australian National University (Australia)
 Alexander L. Gaeta, Columbia University (United States)

5A Biocompatible Materials I
 Yuerui Lu, The Australian National University (Australia)
 Sergey S. Kruk, The Australian National University (Australia)

5B Plasmonics I
 Nikolai Strohfeldt, Universität Stuttgart (Germany)
 Stefan A. Maier, Imperial College London (United Kingdom)

5C Fabrication I
 Mingkai Liu, The Australian National University (Australia)
 Arnan Mitchell, RMIT University (Australia)

6A Medical and Biological Micro/Nanodevices
 Halina Rubinsztein-Dunlop, The University of Queensland (Australia)

6B Plasmonics II
 Shaghik Atakaramians, The University of Sydney (Australia)
 Timothy D. James, The University of Melbourne (Australia)

6C Fabrication II
 David D. Sampson, The University of Western Australia (Australia)
 Alexander S. Solntsev, The Australian National University (Australia)

7A Biocompatible Materials II
 Peggy P. Chan, Swinburne University of Technology (Australia)
Introduction

In December 2013, the United Nations declared 2015 as the International Year of Light (IYL), recognizing the immense importance of light-based technologies in our lives, for our futures, and for the development of humankind.

In December 2015, the SPIE Micro+Nano Materials, Devices, and Applications symposium and the new Australian Institute for Nanoscience (AaN) at the University of Sydney’s Camperdown campus offered the opportunity to celebrate the culmination of the IYL and heightened global awareness of the importance of light-based technologies, including nanoscience.

The SPIE symposium is an interdisciplinary forum for collaboration and learning among top researchers in all fields related to nano- and microscale materials and technologies. This 2015 event took place over 4 days, 6-9 December, and included both oral and poster presentations with a focus on nanostructured and biocompatible materials, medical and biological micro/nanodevices, micro/nanofluidics and optofluidics, nanophotonics for biology and medical applications, plasmonics, and solar cell technologies and fabrication.

The University of Sydney is Australia’s first university with an outstanding global reputation for academic and research excellence. Located close to the heart of Australia’s largest and most international city, the Camperdown campus features a mixture of iconic gothic-revival buildings and state-of-the-art teaching, research, and student support facilities. The University of Sydney attracts many of the most talented students in Australia drawn by its range of quality degrees and strong track record of research programs. The University’s academics are leaders in their disciplines nationally and internationally, driving major research initiatives.

Sydney is Australia’s truly international city and one of the world’s most iconic and livable cities in the world, with plenty of open space, famous beaches, glittering harbour, waterways and bushland, great climate and vibrant culture rich of entertainment, cultural activities, and sporting events. Sydney is at the heart of Australia’s economy, and is ranked first in the Asia Pacific in terms of intellectual capital and innovation. Sydney offers a safe and secure environment for individuals and families, with world-class health care, education, transport and telecommunications with a multicultural environment as over a third of Sydney’s population was born overseas.

Benjamin J. Eggleton
Stefano Palomba