


















wedge south of the BNS and then below southern Lhasa (south of 31°N). The Qaidam Basin and the North
China block are characterized by a seismically fast upper mantle (up to 1% Vp anomaly), especially in the first
200 km depth.

Wehave remodeled thisprofile using the sameapproachused forA-B transect to investigate the relative impor-
tance of themantle chemical composition on the density and seismic velocities and therefore on the resulting
lithospheric structure (Figure 9). In the next paragraphswe present our results along the C-D profile, and in the
next section we discuss the differences between the western and eastern sectors of the Tibetan Plateau. The
supporting information includes the intermediate models along the C-D profile to reach the best fit model.

The best fit model along the C-D profile (Figure 9) considers the same crustal structure provided by Jiménez-
Munt et al. [2008]. Only small differences in the Moho depth have been incorporated to update the crustal
thickness values used by Jiménez-Munt et al. [2008] with the most recent data [Yue et al., 2012; Zhang et al.,
2011]. As we already discuss in section 4.4, there is one locality in the Eastern Tibet (in Qaidam-Qilian
Block) where mantle xenolith suites have been analyzed [Song et al., 2007]. Unfortunately, they were not
suitable to explain the observables, in particular the lower lithospheric mantle velocity beneath the
Qaidam-Qilian zone relative to the Indian-Himalayan-South Tibetan Plateau. Therefore, as with the western
profile, we had to refer to the PetDB xenolith global database to look for a composition able to reproduce
the mantle seismic velocities. We consider a mantle composition beneath the Qaidam, Qilian, and North
China block slightly more fertile relative to that of the Himalayan-Tibetan Plateau region (Figure 9e).

A fertileMantle5composition (Table1) allows reducingabout8%thePwavevelocity in the lithosphericmantle,
generatingVpanomalies about2%smallerbelowtheQaidamandNorthChinablock thanbelowtheHimalayan
orogenand forelandbasin. However, thehigher content in FeO, CaO, andalsomoderately inAl2O3with respect
to Mantle 1 increases the mean density of the lithospheric mantle. In consequence, we have reduced the LAB
depth by ~50 km to keep the fit with the density-dependent observables (elevation, gravity, and geoid). The
resulting lithospheric model (Figure 9) is therefore characterized by a thick and dense lithospheric mantle
below the Himalayan orogen and southern sector of the Tibetan Plateau (~250 km) and a thinner lithospheric
mantle (140–170 km) below the Qiangtang, Sonpan-Ganze, Qaidam, Qilian, and North China regions.

This model confirms the results obtained by the thermal modeling by Jiménez-Munt et al. [2008], though the
LAB topography is slightly different. The newly modeled Indian lithospheric mantle is up to 100 km thicker
beneath the Himalayan orogen and ~40 km beneath the Qiangtang terrain. A lithospheric root is shown
below the Qaidam Basin, with the LAB located at ~160 km depth (~20 km less than in Jiménez-Munt et al.
[2008]). Farther north, our LAB descends from the Qilian Shan, in contrast to Jiménez-Munt et al. [2008]
who propose a LAB shallowing ~40 km along this section of the profile.

The pronounced lithospheric thinning beneath the eastern Qiantang is consistent with the available geother-
mobarometry data (Figure 9) showing very high temperatures at middle lower crustal levels (800–1050°C at
40–70 km depth) [Galvé et al., 2006; Hacker et al., 2000] and at upper sublithospheric levels (1390–1420°C at
140 km depth) [Priestley and McKenzie, 2006; An and Shi, 2007] as extensively discussed in Jiménez-Munt
et al. [2008]. Note that considering just a chemical anomaly (i.e., no mantle thinning) would reduce the calcu-
lated temperatures by about 200°C at these depths (see previousmodels for the Eastern profile in the support-
ing information). Moreover, in order to keep the fitting with observables the new composition should be such
that reduces the Vp by about 0.5% relative to PUM at about 1200°C but has a similar density than PUMat about
1400°C at depths of 160–180 km. None of the selected and tested mantle compositions from PetDB petrolo-
gical database fit these conditions and othermantle compositionwould pose difficulties in justifying its origin.

Along this eastern profile we can differentiate only three lithospheric mantle domains according to their vari-
able chemical compositions, seismic velocities, and thicknesses (Figure 9): (1) the Indian lithospheric mantle
underlying the eastern Himalayan orogen and the Lhasa terrain up to the Bangong-Nujiang Suture and char-
acterized by Mantle 1 composition and a great thickness exceeding 200 km; (2) the lithospheric mantle
beneath the Qiangtang with Mantle 1 composition and only 70 km thick; and (3) the Eurasian lithospheric
mantle below the Qaidam Basin, Qilian Shan, and North China Block of Mantle 5 composition and thicknesses
of about 120 km and variable LAB topography. This triple partition of the lithospheric mantle along the east-
ern transect follows the results of the receiver function study by Zhao et al. [2010], in which the transitional
lithospheric region is defined as the “crush zone,” sandwiched between the India and the Eurasia plate.
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The recent geophysical-petrological study of central Tibet by Vozar et al. [2014] also shows a lithosphere thin-
ning beneath the Qiangtang terrain but with a more moderate jump in the LAB depth below Lhasa terrane
(60–80 km, with respect to 120 km in our model). Their petrological results are consistent with the presence of
a compositional variation under the Tibetan Plateau, suggesting a fertile garnet-lherzolite lithospheric mantle
below the Qiangtang, and a Fe-rich spinel-harzburgite lithospheric mantle below Lhasa. We tested the
compositions of Vozar et al. [2014] along our profile for the Qiangtang (garnet-lherzolite) and the India
lithospheric mantle (Fe-rich spinel-harzburgite), but the results show that the RMSE between calculated
and observed data is twice than our model (Table 3). The increased amount of Fe in the India lithosphere
results into a strong decrease of the elevation in the southern Tibetan Plateau and further misfits in the geoid
anomaly. A shallower LAB could overcome the difficulties, but it would produce a decrease in the positive
seismic anomaly below the southern Tibetan Plateau, which works against seismic tomography results.

6.3. Lithospheric Structure Variations in the India-Eurasia Collision Zone and
Geodynamic Implications

Our lithospheric models help to refine the deep structure of the India and Eurasia collisional orogen both in
cross section (western and eastern transects) and along its strike. The modeled profiles delineate the present
position of the northern edge of the Indian lithospheric mantle beneath the thrust system of the Himalaya
and Tibetan Plateau and suggest decoupling and strain partitioning between the crust and the lithospheric
mantle. Finally, the integration of the modeled lithospheric profiles with seismic tomographic images allows
interpreting the structure of the Indian lithosphere subducting beneath Eurasia.

The variations of lithospheric mantle compositions determined in this study are consistent with the distribu-
tion of the large-scale tectonic domains made of continental blocks or terrains separated by suture zones
(Figure 1). According to our results, the Indian lithospheric mantle is characterized by a homogenous chemi-
cal composition (Mantle 1) in both western and eastern sides of the Tibetan Plateau (Profiles A-B and C-D,
respectively, Figure 10). On the contrary, the Eurasian lithospheric mantle shows a higher compositional
variability, with different lithospheric mantle domains reflecting the different amalgamated blocks caused
by the closing of different branches of the Tethys Ocean [e.g., Pubellier et al., 2008; Replumaz and
Tapponnier, 2003; van Hinsbergen et al., 2011, 2012] (Figure 10). Our models show that the extent of the thick
Indian lithospheric mantle (Mantle 1) beneath the Himalayan orogen and Tibetan Plateau is of ~630 km to the
north of the Main Frontal Thrust in the western profile (Figure 6) and ~550 km along the eastern profile
(Figure 9). This shorter length of the Indian lithospheric mantle in the eastern profile contrasts with the east-
ward increasing width of the Tibetan Plateau varying from ~600 km to 1100 km. In addition, this shorter
length in the eastern profile makes the northern limit of the well-characterized Indian lithospheric mantle
crossing the Qiangtang tectonic domain slightly oblique to its tectonic shape (Figure 10): to the West, the
Indian plate underthrusts the whole Tibetan Plateau up to the Karakax Fault, whereas to the East, it under-
thrusts only the southern half of the plateau (up to the Bangong-Nujiang Suture, BNS in Figure 10). The

Table 3. The RMSEa Between Measurements and Calculated Data (See Explanations in the Text)

Bouguer anomaly (mGal) Geoid (m) Topography (m)

Profile A-B
Model 0 48.26 3.37 435.4
Model 1 43.96 1.72 454.51
Model 2 48.32 5.49 402.78
Model 3 40.78 3.92 334.70
Model 4 38.80 3.19 316.24
Western best fit model 37.80 2.14 343.88

Profile C-D
Model 0-E 39.32 8.59 335.20
Model 1-E 25.04 3.86 335.42
Eastern best fit model 25.06 3.72 343.03
Model with compositions from Vozar et al. [2014] 33.9 6.17 642.58

a
RMSE ¼ 1

N

XN

i¼1
x ið Þobs � x ið Þcalc
� �2� �1=2

,where xobs and xcalc are the observed and calculated data, respectively, and
N is the number of total points along the profile depending on the horizontal discretization. In this study,N is 249 and 230
for A-B and C-D profile, respectively.
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obtained position of the northern boundary of the Indian lithospheric mantle is in agreement with results
from receiver functions by Zhao et al. [2010] and the analysis of P wave shallow tomography sections by Li
et al. [2008] and Replumaz et al. [2013].

The lithospheric mantle composition corresponding to Mantle 1 is also present beneath both, the Tarim Basin
to the west the Qiangtang and the Songpan-Ganzi domains to the east, although amore fertile Mantle 2 PUM
is needed along the entire lowermost part of the Tarim Basin lithospheric domain (Figures 6 and 10). The
Qilian Shan in the eastern profile and the Tian Shan-Junggar Basin and the Altai Range in the western profile
are underlined by Mantle 5, Mantle 3, and Mantle 4, respectively (Figures 6 and 10). This correspondence
between tectonic domains at crustal levels and mantle diversity at depth strongly indicates the different
origin for these lithospheric terrains constituted by slightly different mantle compositions that collided
progressively from north to south to form the wide India-Eurasia Collision Zone.

Interestingly, our results on the compositional variations show that the thickness of Mantle 1 domain is very
similar in both selected profiles, but it is grading into hot asthenospheric mantle in the eastern profile
(beneath NE Tibet, where the lithospheric mantle is only 90 km thick) and into Mantle 2 PUM (i.e., cold

Figure 10. (a) Along-strike comparison of the resulting crustal and lithospheric mantle structures of the two modeled
profiles, superimposed to the seismic tomography. (b) Resulting mantle compositions and localization of the northern
edge of the Indian mantle lithosphere.
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asthenosphere) in the western profile (beneath Tarim Basin, where the lithospheric mantle is up to 180 km
thick). These variations at depth could be related to different stages of the northward advance of the
Indian plate beneath Eurasia. To the east, the still active Indian subduction could keep alive corner flow
processes maintaining a hot asthenospheric wedge beneath the Tibetan Plateau, which thinned out the
lithospheric mantle. To the west, the absence of presently active subduction of India together with the differ-
ent thicknesses and compositions of Indian and Tarim Basin lithospheric mantle domains indicates a different
geodynamic scenario. The Mantle 2 PUM body beneath the Tarim Basin in the western profile, however,
might be related to either an inherited influence of precollision processes or linked to the India-Eurasia
collision. In the first hypothesis, the fertile composition of Mantle 2 PUM might be inherited from older pro-
cesses that occurred before the India-Eurasia collision (e.g., Late Carboniferous-Permian large igneous activ-
ity) [Chen et al., 2014]. In the second hypothesis, the composition of Mantle 2 PUM could be related to the
cessation of a former corner flow activity through a slab break-off and consequent partial thermal recovery
of the asthenospheric wedge. This slab break-off is estimated to have occurred at the onset of the India
indentation (~45Ma) [Negredo et al., 2007], and the detached slab should be currently located at depths of
~1100 km below the Tibetan Plateau, as shown in published tomography images [Replumaz et al., 2010,
2014]. Following this second interpretation, we can speculate that the lithospheric structures of the eastern
andwestern profiles represent, respectively, the pre-break-off phase and the post break-off phase of the India
subduction beneath Eurasia.

The Indian continental mantle extends ~600 km farther north of the Main Frontal Thrust deepening progres-
sively from ~225 km beneath the foreland to ~300 km close to Karakax Fault and shows a slight thickening
(30–50 km) in both transects. The length of the Indian lithosphere beneath the Himalaya and Tibetan
Plateau is of same order of magnitude than calculated shortening in the crustal domains [e.g., DeCelles
et al., 2002; Replumaz and Tapponnier, 2003; van Hinsbergen et al., 2011, 2012]. In fact, ~600 km of Indian
lithospheric mantle is a minimum calculation of its total length if we consider that the original geometry of
the mantle should have been thinner toward the edge of its continental passive margin. If true, this slight
increase in thickness toward the north could be related to tectonic thickening during collision.

A final piece of information is provided by the combination of our lithospheric models and the seismic tomo-
graphy (Figure 10). As indicated, the western profile shows an abrupt northern termination of the Indian
lithospheric mantle in both, our model and tomography models. In contrast, the eastern profile shows a
low angle and north dipping positive anomaly that can be interpreted as the Indian oceanic slab still attached
to the Indian continental lithosphere. This slab tomographic image is not observed in the western profile
where the Indian oceanic lithosphere has been detached after a break-off event as has been discussed.

7. Conclusions

An integrated geophysical-petrological modeling was performed along a 2-D profile crossing the western
Himalayan orogen and Tibetan Plateau, the Tarim Basin, the Junggar and Tian Shan, and ending at the
southern Altai Range. We compared the results with an updated 2-D lithospheric model crossing the eastern
Himalayan orogen and Tibetan Plateau, to consistently discuss the differences along the strike of the
India-Eurasia collisional system. The presented cross sections are the first lithospheric models in the India-
Eurasia collision zone which combine gravity, geoid, elevation, thermal analysis, mantle petrology, and
mantle seismic velocities.

Along the western transect (Profile A-B) the Indian Moho is progressively deepening from ~40 km depth
beneath the foreland to ~90 km depth below the Kunlun Shan. Crustal roots are modeled in the Tian Shan
and Altai ranges, with the crust-mantle boundary located at ~66 km and ~62 km depth, respectively. The
lithosphere shows a gradual thickening from 230 km below the Himalayan foreland to 260 km below the
Himalayan orogen and 295 km below the Kunlun Shan. Between the Tibetan Plateau and the Tarim Basin
the LAB shows a step-like geometry shallowing ~65 km beneath the Tarim Basin and reaching 230 km depth.
The LAB depth increases to ~260 km beneath the Tian Shan and Junggar Basin and to ~270 km below the
Altai Range. Along-profile compositional variations within the lithospheric mantle are required to fit the
observables. The resulting mantle composition and thickness suggest the presence of four lithospheric man-
tle domains along this transect. (i) The Indian lithospheric mantle, which underlies the Himalayan foreland
basin, the Himalayan orogen, the Tibetan Plateau, and the Kunlun Shan, and it is compatible with a generic
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lherzolitic mantle. The India and Eurasia plates are separated by a sharp change in both LAB and Moho
depths, coinciding with the Karakax fault. (ii) The Tarim (Eurasian) lithospheric mantle plunging northward
below the Tian Shan. It is underlined by a sublithospheric thermal anomaly (below 300 km depth), likely
linked to the enrichment in incompatible elements (CaO and Al2O3) of the deepest lithosphere mantle
portion of the Tarim domain. (iii) The Junggar domain characterized by a less dense and seismically slow
lithospheric mantle. (iv) A northern lithospheric mantle domain beneath the Altai Range.

Along the eastern transect (Profile C-D) our results confirm that the Eastern Tibetan Plateau is supported by a
thick lithosphere (~280 km) in the south and a thin lithosphere (~140 km) in the north. In our interpretation,
the Indian lithospheric mantle is underthrusting the Tibetan Plateau up to the Bangong-Nujiang Suture
discontinuity, whereas the lithospheric mantle below the Qaidam Basin, Qilian Shan, and North China
Block belongs to the Eurasian plate. In between, a transitional lithospheric mantle region, characterized by
different thickness, underlies the Qiangtang and partially the north Lhasa terrain. The lithospheric mantle
beneath the Qaidam Basin and Qilian Shan is denser and characterized by higher content in FeO, CaO, and
also moderately in Al2O3.

Both profiles show laterally varying lithospheric mantle structures in terms of lithospheric thickness,
lithospheric mantle density, temperature, and composition. The lithospheric mantle in the western transect
(Profile A-B) is, in average, colder and thicker than in the eastern one (Profile C-D). The resulting compositional
changes in the lithospheric mantle indicate that the Indian plate is chemically more homogeneous than
the Eurasian plate. A generic lherzolitic mantle is compatible with the lithospheric mantle beneath the
Himalayan-Tibetan Plateau, whereas relative enrichments of Fe, Ca, and Al oxides are required beneath the
Eurasian domains northward, which are compatible with metasomatic processes due to melt circulation.
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