Healthdirect’s After Hours GP Helpline – A Survey of Patient Satisfaction with the Service and Compliance with Advice

Ling LIa,1, Andrew GEORGIOUa, Juan XIONGa, Mary BYRNEb, Maureen ROBINSONb and Johanna I. WESTBROOKa

aCentre for Health Systems & Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
bHealthdirect, Australia

Abstract. The after hours GP helpline (AGPH), one of the key services provided by Healthdirect, is an extension of the existing healthdirect telephone nurse triage and advice service. It provides access to telephone health advice by GPs after hours to patients/callers who are triaged by the telephone nurse as needing to see a GP immediately, within four hours or within 24 hours. The aims of this study were to assess patient satisfaction with the AGPH service and compliance with the GP advice; and to investigate factors associated with patients’ compliance. This study included 2486 patients/callers who used the AGPH and participated in a survey between February and September 2013. Over 97.1% of patients/callers were either satisfied or very satisfied with the AGPH service. Compliance was measured in two ways: i) self-reported compliance to advice provided; and ii) matching of self-reported actions with actual GP advice given: 94.0% of patients reported they followed the advice given to them by GPs and for 86.8% of patients their reported actions following consultations matched the recommended advice documented by GPs in the healthdirect database. Patients’ compliance with recommended advice were associated with patient overall satisfaction with the service, the type of AGPH advice received, and the estimated severity level of the conditions. Improving patient satisfaction with the service along with patient understanding of the advice can lead to an increased compliance rate.

Keywords. patient compliance, recommended advice followed, patient satisfaction, after hours GP helpline, medical advice

Introduction

Healthdirect Australia provides Australians with access to health advice and information using telecommunications and online technologies. The after hours GP helpline (AGPH), one of the key services provided by Healthdirect, is an extension of the existing nurse-provided healthdirect telephone triage and advice service. It provides access to telephone health advice by GPs after hours for patients/callers who are triaged by the telephone nurse as needing to see a GP immediately, within four hours or within 24 hours.
Surveying patient compliance with the after hours GP advice can help to identify potential areas for improving aspects of patient management provided by telephone consultation services [1] and determining the impact of services on health services utilisation and outcomes. A previous study investigating nurse triage telephone helplines has reported advice compliance rates ranging from 60-75% [2]. Compliance has been shown to depend on what advice was given, and attributes of the patient. The aims of this paper were to assess patients’ overall satisfaction and compliance with advice provided by the AGPH service and to identify potential factors associated with advice compliance.

1. Method

1.1. Study Setting and Data Source

Regular Computer-assisted Telephone Interview (CATI) surveys were conducted two-weeks after an AGPH consultation among those patients/callers who indicated a willingness to provide feedback. The surveys were conducted by an independent research company in compliance with the Privacy Act. Survey data for the period between February and September 2013 were used in this study. Ethics approval was granted by the University of New South Wales HREC and by Macquarie University HREC (Medical Sciences, Reference No: 5201401033).

1.2. Study Outcome Measures

Two types of compliance data were collected: 1) self-reported compliance with advice; and 2) matching of patients’ reported actions following consultations with the recommended advice documented by GPs in the healthdirect database, in order to determine whether patients followed the recommended advice. Participants were asked 1) “was the GP’s advice followed/partly followed/not followed/unsure?” and 2) “What action was taken for the health issue you called about?”. The answers to the second question were matched with the care advice recorded in the healthdirect database at the time of consultation. Both compliance measures were recorded at three levels: fully compliant/advice followed, partly compliant and non-compliant. The recommended advice followed was considered to be a more rigorous measure of compliance as memory for actions taken has been shown to be a more accurate measure than general assessments of advice compliance [3]. Patients were also asked to rate their level of overall satisfaction with the AGPH service on a scale of five (from very dissatisfied to very satisfied).

1.3. Statistical Analysis

The satisfaction rate was calculated as the proportion of surveyed AGPH patients/callers who reported being satisfied or very satisfied with the service. The compliance rate was calculated as the proportion of the patients whose reported actions were fully or partly consistent with recommended advice recorded by GPs. Satisfaction and compliance rates were calculated and presented by month. We examined the relationship between compliance and call characteristics including satisfaction, type of
advice received, and the estimated severity using the Chi square test. The level of significance was set at p-value <0.05.

2. Results

2.1. Patient and Call Characteristics

In this study, 2486 AGPH patients/callers were surveyed between February and September 2013. More than half of the patients/callers were from NSW (54.2%, \(n=1348\)), followed by Western Australia (25.2%, \(n=627\)), South Australia (16.1%, \(n=400\)) and ACT (4.5%, \(n=111\)).

Table 1. Call and patient characteristics and measured compliance rates

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Category</th>
<th>No. of calls (%)</th>
<th>Percentage of patients followed recommended advice(^*(n))</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calling-for</td>
<td>Self</td>
<td>1250 (50.3)</td>
<td>85.8 (1072)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1236 (49.7)</td>
<td>87.8 (1085)</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td>15-29 years</td>
<td>670 (27.0)</td>
<td>86.0 (576)</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>30-59 years</td>
<td>1487 (59.8)</td>
<td>87.1 (1295)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60+ years</td>
<td>329 (13.2)</td>
<td>86.9 (286)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>2018 (81.2)</td>
<td>86.8 (1752)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>464 (18.7)</td>
<td>86.4 (401)</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Metropolitan</td>
<td>2032 (81.7)</td>
<td>87.4 (1776)</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>450 (18.1)</td>
<td>83.8 (377)</td>
<td></td>
</tr>
<tr>
<td>Estimated severity</td>
<td>Did not know what to do</td>
<td>435 (17.5)</td>
<td>87.1 (379)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Over-estimated</td>
<td>658 (26.5)</td>
<td>84.5 (556)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Under-estimated</td>
<td>193 (7.8)</td>
<td>76.2 (147)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accurately estimated</td>
<td>1184 (47.6)</td>
<td>89.7 (1062)</td>
<td></td>
</tr>
<tr>
<td>AGPH advice</td>
<td>ED or see GP immediately</td>
<td>851 (34.2)</td>
<td>74.4 (633)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>See GP/AH during business hour</td>
<td>1429 (57.5)</td>
<td>93.5 (1336)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-care only</td>
<td>206 (8.3)</td>
<td>91.3 (188)</td>
<td></td>
</tr>
<tr>
<td>Satisfaction level</td>
<td>Dissatisfied/very dissatisfied</td>
<td>16 (0.6)</td>
<td>56.3 (9)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>55 (2.2)</td>
<td>69.1 (38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satisfied/very satisfied</td>
<td>2415 (97.1)</td>
<td>87.4 (2110)</td>
<td></td>
</tr>
</tbody>
</table>

* Including fully and partly complied with the advice received.
As shown in Table 1, 50.3% of calls were made by the patient themselves; 59.8% of callers were between 30 and 59 years old. The majority of calls were from females (81.2%) and people in metropolitan areas (81.7%).

For nearly half of calls (47.6%), the estimated severity of patients’ symptoms matched with those from after hours GPs; 26.5% of calls over-estimated; 7.8% of calls under-estimated; and unknown for 17.5% of calls. Patients/callers were advised by a GP to go to an emergency department (ED) or see a GP immediately in 851 cases (34.2%); to see a GP/allied health (AH) professional during business hours in 1429 cases (57.5%); and to self-care only in 206 cases (8.3%).

2.2. Satisfaction and Compliance Rate Over Time

Overall, 97.1% of patients/callers (n=2415) were either satisfied or very satisfied with the AGPH service and 94.0% (n=2338) reported that patients complied with the advice they received, (87.3% reported they fully complied and 6.8% partially). Comparing reported actions to advice provided by the GPs we found that the majority of patients (86.8%, n=2157) followed the recommended advice, (42.2% identified as fully and 44.6% partially). Rates of satisfaction, self-reported compliance and following recommended advice remained stable over the seven month period (Figure 1).

2.3. Measured Compliance and Call Characteristics

As shown in Table 1, whether patients followed the GPs’ recommended advice or not did not vary much (range from 84% to 88%) regardless of callers’ age, gender and location. The level of recommended advice followed was similar no matter whether calls were made by others on behalf of patients (87.8%) or by the patient themselves (85.8%, p=0.1).
The level of recommended advice followed was significantly associated with the estimated severity of patients’ conditions (p=0.001). Compliance with advice was lowest in patients who under-estimated the severity of patients condition (76.2%), and highest in patients who accurately estimated the severity of the condition (89.7%).

The findings also show whether advice that was followed was strongly related to the type of AGPH advice (p<0.0001): the highest compliance was achieved among patients who were advised to see a GP/AH professional during business hours, (93.5%), followed by those advised to self-care (91.3%). The lowest compliance was among those who were advised to visit an ED or immediately visit a GP (74.4%).

Compliance with recommended advice was also strongly associated with positive satisfaction with the service (p<0.0001). Compliance for those patients who reported being satisfied or very satisfied was 87.4% while it was 69.1% and 56.3% respectively for those who felt neutral or dissatisfied with the service.

3. Discussion

This study shows that satisfaction with AGPH service overall was very high (97.1%), which is consistent with findings in past studies [4-6]. Our findings showed that self-reported compliance with AGPH advice was 94.0%, but actions were only consistent with documented GP advice in 86.8% of clients. These rates are higher than previously reported compliance for studies of nurse triage helplines, which have reported an average overall rate of 62% (ranged between 60-75%) from a recent meta-analysis review[2]. A French study of patient compliance with medical advice given by telephone [1] reported a compliance rate of 69.9% of 463 calls.

Although the recommended advice followed is a more rigorous measure [3] than self-reported compliance, there are challenges in applying and interpreting the recommended advice followed. The clinical record system only allowed for the recording of one level of advice, such as ‘Self Care and See the GP in business hours’. The GPs tended to give a spectrum of advice to cover any changes in the health condition the patient may experience. An example of this would be: two levels of advice from a GP: advising a mother 1) to give a child paracetamol to relieve symptoms and then see the GP in the morning, 2) but if the child’s temperature rose again during the night to take the child to the ED. The healthdirect database only recorded the first set of advice, but the mother might report being advised to do the second (go to ED) as the child did get worse overnight. Therefore, the level of recommended advice followed would under-represent the possible true level of compliance.

Patient opinion of the quality of the AGPH service is crucial to the acceptance and utilisation of the service, as well as influencing patients’ adherence to the advice given. We found that patients/callers who were satisfied or very satisfied with the telephone consultant services were more likely to follow the GP’s advice; if they were not satisfied with the service, they were less likely to follow the advice given. These findings suggest that increasing satisfaction levels with the service may improve patient compliance.

We compared the level of recommended advice followed by the estimation of the severity of their symptoms. Compliance was greatest among patients who accurately estimated the severity of their condition. To the best of our knowledge, no previous study has reported this association.
4. Conclusion

Patients/callers were generally satisfied with the AGPH service and the majority of patients complied with the recommended advice. The patients who did not follow the AGPH advice may have done so because their health concern had improved before they had organised to go to an ED or see a GP. Compliance with the recommended advice varied depending on a range of factors, such as overall satisfaction with the service, the type of AGPH advice received, and the estimated severity level of the conditions. Improving patient satisfaction with the service along with patient understanding of the advice could lead to an increased compliance rate.

References

DIGITAL HEALTH INNOVATION FOR CONSUMERS, CLINICIANS, CONNECTIVITY AND COMMUNITY
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media. The series has been accepted by MEDLINE/PubMed, SciVerse Scopus, EMCare, Book Citation Index – Science and Thomson Reuters’ Conference Proceedings Citation Index.

Series Editors:
Dr. O. Bodenreider, Dr. J.P. Christensen, Prof. G. de Moor, Dr. U. Fors, Prof. A. Hasman, Prof. E.J.S. Hovenga, Prof. L. Hunter, Dr. I. Iakovidis, Dr. Z. Kolitsi, Mr. O. Le Dour, Dr. A. Lymberis, Prof. J. Mantas, Prof. M.A. Musen, Prof. P.F. Niederer, Prof. A. Pedotti, Prof. O. Rienhoff, Prof. F.H. Roger France, Dr. N. Rossing, Prof. N. Saranummi, Dr. E.R. Siegel, Prof. T. Solomonides and Dr. P. Wilson

Volume 227

Recently published in this series
Vol. 226 J. Mantas, A. Hasman, P. Gallos, A. Kolokathi and M.S. Househ (Eds.), Unifying the Applications and Foundations of Biomedical and Health Informatics
Vol. 225 W. Sermeus, P.M. Procter and P. Weber (Eds.), Nursing Informatics 2016 – eHealth for All: Every Level Collaboration – From Project to Realization
Vol. 222 E. Ammenwerth and M. Rigby (Eds.), Evidence-Based Health Informatics – Promoting Safety and Efficiency Through Scientific Methods and Ethical Policy

ISSN 0926-9630 (print)
ISSN 1879-8365 (online)
Preface

There’s never been a more exciting time to be involved with health informatics. In the last few decades, health informaticians have established the knowledge base and practical expertise to facilitate the development of ever-more capable technical systems, increasing connectivity, expanding access and greater mobility of e-health and information management systems. We have seen the evolution from simple computer based records to systems that allow intra-organisational, national, even international communication and information exchange. We have also seen progress in e-health and most recently m-health, facilitating access to information and advice almost anytime, anywhere. The health informatics community is now building on this strong foundation, taking a central role in the digital transformation of the healthcare sector. The Australian National Health Informatics Conference (HIC), Australia’s premier health informatics event, is a key avenue for facilitating this transformation. This Conference, organised by the Health Informatics Society of Australia (HISA), with the support of the Australasian College of Health Informatics (ACHI), provides the ideal professional and social environment for clinicians, researchers, health IT professionals, industry and consumers to integrate, educate and share their knowledge to drive innovative thinking, to enhance services and allow greater consumer involvement. This is emphasised in the primary theme of the 2016 Conference: Digital Health Innovation for Consumers, Clinicians, Connectivity, Community.

The papers in this volume reflect this theme, highlighting the cutting edge research evidence, technology updates and innovations that are seeing the digital transformation of the healthcare sector. The papers are indicative of the wide spectrum of work encompassing major theoretical concepts, examples of key applications of new technologies and important new developments in the field of health informatics. They emphasise the central role that health informatics and e-health play in connecting information systems, being smart with data, and enhancing both practitioner and consumer experience in healthcare interactions. Welcome to the innovation boom.

This year’s program maintains the high standard of papers for which the conference is well-known. All papers were blind-peer reviewed by three experts in the field of health informatics. These reviewers are widely considered to be prominent academics and industry specialists. The contribution of the Australasian College of Health Informatics, particularly the voluntary participation of Fellows, in supporting this review process is gratefully acknowledged. Similar contributions made by many senior and experienced members of the Health Informatics Society of Australia is also acknowledged. Forty papers underwent the initial review and feedback process. Resubmitted papers were then validated by the Scientific Program Committee to ensure that reviewers’ recommendations were appropriately addressed or rebutted. In total 20 papers were selected for inclusion in this volume. Congratulations to all the authors.

Andrew Georgiou
Louise K. Schaper
Sue Whetton
Acknowledgements

The Editors wish to thank the following people for their efforts in reviewing the papers submitted for HIC 2016.

A/Prof Andrew Georgiou, Macquarie University
Dr Sue Whetton, University of Tasmania
Dr Michael Bainbridge, ASE Health
Dr Melissa Baysari, Macquarie University
Vicki Bennett, Vicki Bennett Consulting
Dr Jen Bichel-Findlay, University of Technology, Sydney
Heidi Bjering, University of Western Sydney
Neville Board, Australian Commission on Safety and Quality in Health Care
Dr Andy Bond, National E-Health Transition Authority
Dr Douglas Boyle, University of Melbourne
Ian Bull, ACT Health
Dr Kerryn Butler-Henderson, University of Tasmania
Dr Joanne Callen, Macquarie University
Paul Clarke, JamPac
A/Prof Elizabeth Cummings, University of Tasmania
Maria Dahm, Australian Institute of Health Innovation
Dr Karen Day, University of Auckland
Cathy Doran, Health Informatics Consultant
Dr Juanita Fernando, Monash University
Joanne Foster, Queensland University of Technology
Janette Gogler
A/Prof Heather Grain, E-Health Education
Dr Kathleen Gray, University of Melbourne
Dr David Hansen, The Australian E-Health Research Centre, CSIRO
Christian Hay, GS1 Switzerland
Leanne Holmes, Holmes Health Information
Dr Evelyn Hovenga, Global eHealth Collaborative
Dr Inga Hunter, Massey University
Jitendra Jonnagaddala, University of New South Wales
Prof Yogi Kanagasingam, The Australian E-Health Research Centre, CSIRO
Dr Kenneth Lee, University of Tasmania
Dr Michael Legg, Michael Legg & Associates
Dr Hugo Leroux, The Australian E-Health Research Centre, CSIRO
Dr Hugh Leslie, Ocean Informatics
Lawrence Lim, Griffith University
Amy Mayer, National Allied Health Classification Committee
Simon McBride, The Australian E-Health Research Centre, CSIRO
Dr Vincent McCauley, IHE Australia
Prof Jon Patrick, Health Language Analytics
Dr Lua Perimal-Lewis, Flinders University
Dr Mirela Prgomet, Macquarie University
Dr Magdalena Raban, Macquarie University
Derek Ritz, EcGroup
Dr Basema Saddik, King Saud Bin AbdulAziz University for Health Sciences
Dr Antony Sara, South Eastern Sydney Local Health District
Dr Philip Scott, University of Portsmouth
Prof Jeffrey Soar, University of Southern Queensland
Prof Paula Swatman, University of Tasmania
Alan Taylor, eDevelopment Solutions
Dr Chandana Unnithan, Victoria University
Dr Deborah van Gaans, University of South Australia
A/Prof Klaus Veil, eHealth & HL7 Training Partners
Dr Deborah Verran, Sydney Local Health District
James Walters
Prof Jim Warren, University of Auckland
A/Prof Trish Williams, Edith Cowan University
Contents

Preface v

Andrew Georgiou, Louise K. Schaper and Sue Whetton

Acknowledgements vii

Development of an Electronic Notification System for Influenza-Like Illness Sentinel Surveillance 1

Mehnaz Adnan, Donald Peterkin and Graham Mackereth

Avoiding Failure for Australia’s Digital Health Record: The Findings from a Rural E-Health Participatory Research Project 8

H. Almond, E. Cummings and P. Turner

Leveraging the EHR to Facilitate Efficient Surgical Audit: A Case Study from a Ophthalmic Private Practice 14

Ben Connell and Trevor Ward

Feasibility of Technology Enabled Speech Disorder Screening 21

Andreas Duenser, Lauren Ward, Alessandro Stefani, Daniel Smith, Jill Freyne, Angela Morgan and Barbara Dodd

A User-Centred Approach to Designing an eTool for Gout Management 28

Anna Fernon, Amy Nguyen, Melissa Baysari and Richard Day

Development of an At-Risk Assessment Approach to Dietary Data Quality in a Food-Based Clinical Trial 34

Vivienne Guan, Yasmine Probst, Elizabeth Neale, Allison Martin and Linda Tapsell

Two Studies on Twitter Networks and Tweet Content in Relation to Amyotrophic Lateral Sclerosis (ALS): Conversation, Information, and ‘Diary of a Daily Life’ 41

Bronwyn Hemsley and Stuart Palmer

Promoting UV Exposure Awareness with Persuasive, Wearable Technologies 48

M. Sazzad Hussain, Liam Cripwell, Shlomo Berkovsky and Jill Freyne

Hello Harlie: Enabling Speech Monitoring Through Chat-Bot Conversations 55

David Ireland, Christina Atay, Jacki Liddle, Dana Bradford, Helen Lee, Olivia Rushin, Thomas Mullins, Dan Angus, Janet Wiles, Simon McBride and Adam Vogel

Classification of Movement of People with Parkinsons Disease Using Wearable Inertial Movement Units and Machine Learning 61

David Ireland, Ziwei Wang, Robyn Lamont and Jacki Liddle

Predicting Unpanned Return to Hospital for Chronic Disease Patients 67

Sankalp Khanna, Norm Good and Justin Boyle