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ABSTRACT

This paper proposes a new method for region of interest
reconstruction in emission tomography assuming pro-
jections from the entire field of view (FOV) are avail-
able. Unlike some other region of interest evaluation
approaches where the system matrix is reformulated
simply by summations over columns corresponding
to pixels outside the region of interest, our approach
reformulates the system matrix using the Bayes prob-
ability formula. The simulation study reveals that our
method outperforms the traditional approaches judged
by reconstruction quality.

Keywords: Region of interest reconstruction, maxi-
mum penalized likelihood, system matrix formulation,
Bayes probabilities.

I. INTRODUCTION

This paper considers the problem of region of inter-
est (ROI) reconstruction in emission tomography. Our
aim is to develop accurate and easy-to-implement ROI
reconstruction algorithms.

In emission tomography, medical interests are often
reduced to a particular region or organ, called ROI, and
hence it is unnecessary to reconstruct the entire field of
view (FOV) covered by the tomographic system. We
divide FOV into two regions: the ROI and the region
outside the ROI, i.e.

FOV = ROI U region outside ROI. (D)

It is not only computationally more efficient if recon-
structing only the ROI, but also it becomes feasible
to compute the mean and covariance matrix of the
reconstructed ROI due to its much smaller number of
voxels.

We must emphasize the important different between
our interest in this paper and the focus of region of
interest evaluation, for example, in [1] and [2]. Their
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aim is to conduct ROI evaluation due to concerns in the
quantification of emission tomographic data [2]. In this
context, the FOV is divided into several ROIs, namely

FOV = ROI; U --- UROIy, 2)

and the aim is to estimate the average radiotracer
concentration in each ROIL.

The following notations are adopted throughout this
paper. Assume that FOV contains p voxels and we
use x1,...,T, to denote radiotracer concentrations of
voxels 1,...,p. Let y1,...,y, be camera measure-
ments of camera bins 1,...,n. We use x to represent
the p-vector of all radiotracer concentrations and y to
present the n-vector of all camera measurements. The
system matrix, with size of n x p, is denoted by A,
where its (7, j)th element a;; represents the conditional
probability that, given a photon is released from voxel
j, it will landed on camera bin 7. Let N be the index
set for all voxels, i.e. N = {1,...,p}. Also let the
index set for the ROI be denoted by R and the index
set for the region outside the ROI be denoted by O,
then

N=RUO. 3)

Our interest is to estimate those x;, where j € R, from
the camera measurements ¥y, . . . , Yn.

For simplicity, we assume the tomographic imaging
model considered by this paper is the same as [3].
Namely, we assume the y;’s are independent and y; ~
Poisson(p;) with p; = A;x, where A; represents the ith
row of A. The positive maximum penalized likelihood
(MPL) estimate of z is defined by

T = argmax {Z(—,ui + y; log Mz‘) — hJ(JS)} , 4

i=1

where h > 0 is the smoothing parameter and J(x) is
the penalty function constraining Z to possess certain
local smoothness properties.
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We use xx to denote the sub-vector of = correspond-
ing to the ROI and x¢ the sub-vector corresponding to
the region outside ROI. The key factor for accurate es-
timation of x depends largely on accurate formulation
of the new system matrix. Methods described in [1] and
[2], as briefly explicated in Section II, formulate the
system matrix simply by summing the columns of A
corresponding to the region outside the ROIL. In Section
III-A we introduce a new approach to formulate the
system matrix, which is based on the Bayes formula. A
positively constrained multiplicative iterative algorithm
is adopted in Section III-B to provide positive MPL
ROI reconstructions. A simulation study is reported in
Section IV to demonstrate advantages of our method
over the existing methods. Finally, conclusions are
given in Section V.

II. SOME EXISTING ROI EVALUATION
METHODS

Iterative methods already exist for ROI evalution in
emission tomography, such as [1] and [2]. Although
these methods can be used for ROI reconstruction, they
were developed in a totally different context, as has
been explicated in Section I. We summarize some of
these method in this section.

According to (2), FOV is divided into d ROIs. Let

R1,...,Rq be the index sets for these d ROIs, then
N = Ule’Rr. Note that p; can be reexpressed as
d
i = Z( Z ij ;). )
r=1 jeER,

If radiotracer concentration in each ROI can be as-
sumed constant, then p; in (5) becomes

d
pi =Y girks, (6)
r=1

where ¢, denotes the common z; for the rth ROI and
Jir = Z]ERT Qij.

Equation (6) explains that the new system matrix
G = (gir )nxa is obtained from A by summing columns
of A corresponding to each ROI.

Due to (6), existing emission tomographic recon-
struction methods can be applied directly. For exam-
ple, [1] proposes the maximum likelihood expectation-
maximization (ML-EM) [3] to estimate &., r =
1,...,d. [2] argues that as d is small, direct least-
squares method, which involves matrix inversion, can
be employed to estimate &,.
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We may follow the above ROI evaluation methods to
perform our ROI reconstruction tasks. Referring to the
ROI in equation (1), we assume there are m voxels in
the ROL. Then FOV is divided into m+-1 regions, where
the first m regions correspond to m voxels in the ROI
and the last region corresponds to the region outside
the ROI. Thus the new system matrix G is formulated
as:

G= (9ir>n><(m+1)7 (7)

where g; = a;; for j € R and r < m (the definition
of R is in (3)), and ¢;my1 = Zje(’) a;j. However,
this approach of formulating the new system matrix G
(actually its last column) usually leads to low quality
ROI reconstructions; see Section IV for an example.
Its main reason is that the elements of the last column
of G no longer represent true conditional probabilities.

In next section we will explain a new, and correct,
approach to compute the last column of the new system
matrix.

III. MAXIMUM PENALIZED LIKELIHOOD
ROI RECONSTRUCTION

In this section we provide the details of our ROI
reconstruction method, including, first, how to formu-
late the new system matrix correctly, and then how
to find the positively constrained MPL reconstruction
iteratively.

III-A. System matrix formulation

The key factor for an accurate ROI reconstruction
in emission tomography is that the system matrix A
must be reformulated to reflect the fact that all voxels
outside the ROI are combined to form a single voxel.
To differentiate from the system matrix notation used in
Section II, we let, in this section, A be the new system
matrix for the ROI reconstruction. The size of A is still
n x (m+ 1), where its last column corresponds to the
combined voxels outside the ROI. Elements of A are
denoted by a;;.

For emission tomography, a;; represents the condi-
tional probability that a photon is detected in camera
bin ¢ given it is released from voxel j, and we denote
this interpretation by expressing

aij = P(i|§). ®)

Similarly, we use P;(i) to denote the probability that a
photon arrives in camera bin ¢ and P,(j) to represent
the probability that a photon is released from voxel j.



Thus, after combining all voxels in the region outside
the ROI into a single voxel (called voxel (m + 1)), the
entries in the last column of A represent G;m4+1 =
P(i|m +1). According to the Bayes probability for-
mula,

e PG) PGIORG
o Pl R
= wja, (€))
j€o

where weight w; is given by w; = P,(j)/ > _,co Po(t),
and these weights satisfy > jeo wj = 1; see equation
(3) for the definition of O.

In (9), probabilities P,(j) (for j € ), and thus
weights w;, are unavailable and must be estimated. We
recommend to estimate w; by

x*

_ J

> teo T 7
where x} denotes ceratin pre-estimated z; for j € O,
such as the filtered-backprojection (FBP) estimate or
the iterative maximum likelihood (ML) estimate using
a small number (such as 10) of iterations.

In summary, we formulate matrix A as follows.
The first m columns of A are given directly by those
columns of A corresponding to the ROI, and the last
column of A, according to equation (9), is given by
the weighted average of columns of A corresponding
to voxels outside the ROI.

If the ROI is small its system matrix A has much less
number of columns than A. Hence it becomes feasible
to pre-compute and store A.

(10)

wj

III-B. Multiplicative iterative ROI reconstruction

Let z represent the radiotracer concentration of the
combined pixels outside the ROI and let § = (zr,2)";
see Section I for the definition of xx . The positive MPL

ROI reconstruction is defined as:

) — ) 11
0 argrélza(%( 9), (1)
where
®(0) = (—fii + yilog fis) — hJ(0),  (12)

i=1

where [i; = flzﬂ with /L- being the ith row of A, h>0
is the smoothing parameter and J(f) is the penalty
function. It is important that .J(#) smoothes only zx
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Fig. 1. Phantom (left) and projection measurements (right).

rather than z. For example, for a quadratic penalty
J(0) = 56716, where the superscript 7' denotes matrix
transpose, we choose

R O1><m
I'= .
< Omx1 O )

To solve optimization problem (11), the existing
positive MPL reconstruction methods, such as [4] and
[5], can be adopted directly. For this paper, however,
we opt to use the multiplicative iterative (MI) algorithm
of [6] to iteratively compute the positive MPL estimate.
Let (%) be the estimate of @ at iteration k. At iteration
k + 1, the MI algorithm involves two steps:

13)

1) Compute

pk+L/2) _ k) Do dijyi/[bgk) _ hJ]’-(H(k)V
I D SN ) S
(14)
where [lz(k) is fi; evaluated at 6(F), J3(0) rep-
resents the derivative of J with respect to 6,
a” =min(a,0) and a™ = max(a,0).
2) If ®(9*+1/2) > (O*)) then set 9+1)
9(k+1/2); otherwise find an a®) < 1 to give

fUH) — g 4 o0 (gh+1/2) _ o))

15)

such that ®(9*+1) > &(9*)). The line search
step size o¥) can be obtained by, for example,
step half or Armijo’s rule.
It has been proved in [6] that, under certain regularity
conditions, the MI algorithm converges to the posi-
tively constrained MPL solution 6>0.

IV. SIMULATION STUDY

We used an elliptical phantom shown in Fig. 1 (left)
in this simulation study. The elliptical phantom, which
has the dimensions of 64 x 51 pixels, is contained inside
a square of 64 x 64 pixels. The background outside the
elliptical phantom has zero emissions. The two low
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Fig. 2. ROI reconstructions by ROI-Bayes (row 1) and ROI-
sum (row 2). Columns correspond to iterations 8, 32, 64 and
128.

activity circles represent the lungs and the high activity
ring corresponds to the myocardium. Within the left
lung there is a lesion of size 2 x 2 pixels. The area
inside the white rectangle is the ROI.

The simulated system used SPECT geometry. There
were 64 attenuated parallel beam projections uni-
formly spaced over 360°, and each projection contained
64 measurements. Attenuation coefficients were 0.15
/pixel (water) within the body, except for within the
two lungs, where the coefficients were 0.0375 /pixel
(vapour). The projection measurements (Poisson noise
contaminated) are displayed in Fig 1 (right) and the
total measurement (counts) is 401,674.
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Fig. 3. Plot of square root of average squared errors for
ROI-Bayes (-) and ROI-sum (- -).

We performed ROI reconstructions using both the
summation (called ROI-sum) and the Bayes (called
ROI-Bayes) based system matrix formulations. For fair
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comparisons, both approaches used the same starting
value, the same quadratic penalty matrix (13) and
the same smoothing value » = 2 x 1075, For ROI-
Bayes, ten ML-EM iterations were run to estimate the
last column of A (see equation (10)). Reconstructions
are exhibited in Fig. 2. Clearly, ROI-Bayes produced
more accurate estimate judged by the image scale.
Plots of square-root of average point-wise squared
errors (defined as (- ZT:l(éj - Htmevj)Q)l/z) against
iteration numbers in Fig. 3 also confirm this finding.

V. CONCLUSION

This paper develops an accurate ROI reconstruction
method. The fundamental difference between our and
the others is that we use the Bayes formula to compute
the new system matrix. The simulation study indicates
that our approach produces less reconstruction errors.
However, our method requires a brief full FOV recon-
struction using, e.g. FBP or ML with a small number
of iterations, and hence is slightly more computational
demanding.
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