Invited/Research note

Conductivity imaging of canine body using 3T magnetic resonance electrical impedance tomography (MREIT) system

H.J. Kima, Y.T. Kima, W.C. Jeonga, A.S. Minhasa, C.Y. Limb, H.M. Parkb, E.J. Wooa,*

a Department of Biomedical Engineering, Kyung Hee University, Yongin, P.O. Box 446-701, Republic of Korea
b BK21 Basic & Diagnostic Veterinary Specialist Program for Animal Diseases and Department of Veterinary Internal Medicine, Konkuk University, Seoul, P.O. Box 143-701, Republic of Korea

Received 24 April 2010; revised 20 August 2010; accepted 31 October 2010

KEYWORDS
MREIT; Magnetic flux density; Conductivity image; Canine body; Harmonic B_z.

Abstract Magnetic Resonance Electrical Impedance Tomography (MREIT) aims to produce cross-sectional images of conductivity distributions inside animal and human subjects. In this study, we validate its feasibility by performing conductivity imaging experiments of post-mortem canine bodies. After clipping the hair of a beagle, we attached four carbon–hydrogel electrodes and placed the dog inside our 3T MRI scanner. We injected the imaging current in the form of short pulses into the imaging area, the timing of which was synchronized with a chosen pulse sequence. By obtaining images of the induced magnetic flux density distributions inside the dog, we reconstructed conductivity images using the single-step harmonic B_z algorithm based on the relationship between conductivity and magnetic flux density. Reconstructed conductivity images of heart, kidney, prostate, and other organs exhibited unique contrast information hardly observed in other imaging modalities. By providing cross-sectional conductivity images with a spatial resolution of a few millimeters, MREIT may deliver unique new diagnostic information in future clinical studies.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.

1. Introduction

The electrical conductivity of biological tissue is determined by its molecular composition, cellular structure, concentration and mobility of ions in intra-and extra-cellular fluids, temperature and other factors [1–3]. Since it may deliver unique and new diagnostic information related to the physiological and pathological status of the tissue, there have been numerous studies to visualize conductivity distribution inside the human body [4,5].

Magnetic Resonance Electrical Impedance Tomography (MREIT) has been recently proposed for cross-sectional conductivity image reconstructions, with a spatial resolution of a few millimeters [6]. In MREIT, we inject a current into an imaging object through a pair of surface electrodes. The conductivity distribution inside the object affects the internal current pathway, by Ohm’s law. The current generates a magnetic field and the induced magnetic flux density is determined by the Biot–Savart law. From MR phase images, we can obtain the induced magnetic flux density data in the form of an image [7–9]. By applying a conductivity image reconstruction algorithm to measured magnetic flux density images subject to multiple imaging currents, we can reconstruct cross-sectional conductivity images of the imaging object.

Incorporating a current source to an existing MRI scanner, the MREIT technique is expected to provide new contrast information. Following the original ideas of MREIT [10–14], there have been numerous studies on its theory [15–17], reconstruction algorithms [18–21] and imaging experiments [22–26]. Post-mortem and in vivo animal imaging studies demonstrated that we can produce high-resolution conductivity images of intact animals [25,26]. Though the first trial of human imaging experiments has been lately reported [27], this new imaging method requires further animal studies, focusing on organs of interest, in terms of their conductivity values.

The purpose of this study is to show the potential of the MREIT technique as a new clinically useful bio-imaging
modality, through whole body animal imaging experiments. Describing the imaging method, we will show cross-sectional conductivity images of the normal canine chest, upper and lower abdomen and pelvis. We suggest similar imaging studies, using various diseased animal models.

2. Materials and methods

2.1. Conductivity imaging method in MREIT

We assume a three-dimensional imaging object, Ω, with its conductivity distribution, σ, and boundary, $\partial \Omega$. Attaching a pair of surface electrodes, we inject low-frequency current, I, into the object. The injected current spreads throughout the domain, Ω, and induces distributions of current density, $\mathbf{J} = (J_x, J_y, J_z)$, voltage, u, and magnetic flux density, $\mathbf{B} = (B_x, B_y, B_z)$. These are determined by the conductivity distribution, σ, and the boundary geometry of the imaging object, as well as the electrode configuration.

The induced voltage, u, in Ω satisfies the following boundary value problem with the Neumann boundary condition:

$$\nabla \cdot (\sigma(r) \nabla u(r)) = 0 \quad \text{in} \quad \Omega,$$

$$-\sigma \nabla u \cdot \mathbf{n} = f \quad \text{on} \quad \partial \Omega,$$ \hspace{1cm} (1)

where \mathbf{n} is the outward unit normal vector on $\partial \Omega$, j is a normal component of the current density on $\partial \Omega$, due to I, and $r = (x, y, z)$ is a position vector. The current density, \mathbf{J}, is given by:

$$\mathbf{J}(r) = -\sigma(r) \nabla u(r) \quad \text{in} \quad \Omega.$$ \hspace{1cm} (2)

The induced magnetic flux density, \mathbf{B}, in Ω can be expressed as:

$$\mathbf{B}(r) = \mathbf{B}_{\Omega}(r) + \mathbf{B}_s(r) \quad \text{in} \quad \Omega,$$ \hspace{1cm} (3)

where \mathbf{B}_{Ω} is the magnetic flux density due to \mathbf{J} in Ω, and \mathbf{B}_s is from currents in external lead wires. From the Biot–Savart law:

$$\mathbf{B}_s(r) = \frac{\mu_0}{4\pi} \int_{\partial \Omega} \mathbf{J}(r') \times \frac{r - r'}{|r - r'|^3} \, dr'.$$ \hspace{1cm} (4)

Lee et al. investigated the term \mathbf{B}_s and suggested experimental and also algorithmic ways of minimizing its effects, based on $\nabla \cdot \mathbf{B}_s = 0$ in Ω [16]. From the Ampere law, \mathbf{J} in Eq. (2) can be expressed as:

$$\mathbf{J}(r) = \frac{1}{\mu_0} \nabla \times \mathbf{B}(r) \quad \text{in} \quad \Omega.$$ \hspace{1cm} (5)

Taking the curl of both sides in Eq. (5) and using Eq. (2), we obtain:

$$\nabla \times \mathbf{B}(r) = -\mu_0 \nabla u(r) \times \nabla \sigma(r) \quad \text{in} \quad \Omega.$$ \hspace{1cm} (6)

In the B_z-based MREIT, we measure only B_z using an MRI scanner, where z is the direction of its main magnetic field. Extracting the z-component from Eq. (6), we may find the relation between $\nabla^2 B_z$ and $\nabla \sigma$. To reconstruct an image of σ from measured B_z data sets, Seo et al. and Oh et al. developed the harmonic B_z algorithm, which we used in this paper [18,19].

2.2. Animal preparation

Imaging objects were ten healthy laboratory beagles (four males and six females, 2–3 years old, weighing 8–15 kg). All of them were healthy without a history of any known disease. The dogs were screened for metabolic diseases by complete blood count and serum chemistry analysis. They had no signs of metabolic and neurological problems. To prevent dribbling, we injected 0.1 mg/kg of atropine sulfate. Ten minutes later, we anesthetized the dog with an intramuscular injection of 0.2 ml/kg Tiletamine and Zolazepam (Zoletil 50, Virbac, France). Twenty minutes later, we sacrificed it with an intravenous injection of 80 mg/kg KCL (Entobar, Hanrim Pharmacy, Korea). After clipping and shaving the hair around a chosen imaging area, we rubbed the region of the electrode attachment using a skin preparation gel (D.O. Weaver and Co., USA). This procedure was approved by the Institutional Animal Care and Use Committee (IACUC) of Konkuk University, Seoul, Korea.

2.3. Imaging experiment

We attached four carbon–hydrogel electrodes (HUREV Co., Ltd., Korea) around the imaging area (Figure 1). The size of each electrode was $80 \times 80 \times 5.76$ mm3. By using large electrodes with a wide coverage of the circumference, we tried to induce a more uniform internal current density distribution. We placed the animal inside the bore of our 3T MRI scanner (Magnum 3, Medinus Co., Ltd., Korea). We injected currents in two mutually orthogonal directions between two pairs of electrodes facing each other. The injection current amplitude ranged from 25 to 35 mA. We adopted the injection current nonlinear encoding (ICNE) pulse sequence [28]. The imaging parameters were as follows:

1. Chest imaging: TR/TE = 1000/30 ms, FOV = 240 × 240 mm2, matrix size = 128 × 128, slice thickness = 5 mm, number of slices = 8, NEX = 24 and total imaging time = 200 min.
2. Abdomen imaging: TR/TE = 1200/30 ms, FOV = 280 × 280 mm2, matrix size = 128 × 128, slice thickness = 4 mm, number of slices = 8, NEX = 10 and total imaging time = 100 min.
3. Pelvis imaging: TR/TE = 1000/30 ms, FOV = 220 × 220 mm2, matrix size = 128 × 128, slice thickness = 4 mm, number of slices = 8, NEX = 16 and total imaging time = 120 min.

2.4. Conductivity image reconstruction

We used CoReHA (conductivity reconstructor using harmonic algorithms), which is an integrated software package for MREIT [29,30]. It provides GUI-based functions for all data processing routines needed to produce conductivity images from measured k-space data sets. We used the single-step harmonic B_z algorithm implemented in CoReHA for multi-slice conductivity image reconstructions [31]. All conductivity images presented in this paper should be interpreted as scaled conductivity images, providing only contrast information.

3. Results

3.1. Chest imaging

Figure 2 shows images of a canine chest. The reconstructed conductivity image reveals conductivity contrasts among the
heart, longissimus thoracis muscle, and thoracic wall. Since MR signals from the lungs are weak, conductivity images of the lungs show peculiar noise patterns. The enlarged conductivity image of the heart (Figure 3) well distinguishes the heart structure, including the ventricle, ventricular septum and myocardium.

3.2. Abdomen imaging

Figure 4 shows images of a canine upper abdomen. Conductivity images reveal different organs, including the liver, stomach, gallbladder and blood vessels. Figure 5 shows images of a canine lower abdomen. Conductivity images distinguish organs in the lower abdomen, including the spinal cord, peritoneal cavity, kidney, liver, large and small intestines, spleen and stomach. The peritoneal cavity, which mainly consists of conductive fluids, shows a high conductivity value. The internal medulla of the kidney and the urethra appear to be significantly more conductive than the cortex of the kidney.

3.3. Pelvis imaging

Figure 6 shows images of a canine pelvis. Conductivity images exhibit different contrasts for the prostate, sacrum,
rectum and surrounding muscles. Figure 7 shows enlarged images of the prostate. Compared with the MR magnitude image of the prostate, the corresponding conductivity image shows a clear contrast between the central and peripheral zones, which are closely related to prostate cancer and benign prostatic hyperplasia.

4. Discussion and conclusion

MREIT has now reached the stage of animal and human experiments. To support its clinical significance, we should demonstrate that the conductivity image provides meaningful diagnostic information that is not available from other imaging modalities. This requires accumulated experience and knowledge on how to interpret a conductivity image in relation to the anatomy and pathology of a specific tissue and organ. Conductivity images shown in this paper indicate that numerous tissues and organs in the canine chest, abdomen, and pelvis are distinguishable in a different way compared with MR images.

MR imaging of the chest is known to be troublesome because of physical and physiological factors such as low proton density, susceptibility effects, respiratory movements, and cardiac and vascular pulsations [32,33]. There are several MR strategies to overcome these problems, and some are based on a standard 1H MRI aimed at increasing the SNR of lung parenchyma [34–36]. Equipped with a different contrast mechanism, MREIT imaging of the chest will be supplementary to the conventional
MR imaging. Lung diseases, such as pneumonia and edema, are expected to be clearly distinguishable in a conductivity image, primarily due to enhanced conductivity values associated with them. Electrical conductivity imaging of the heart could be another long-term research goal, with a significant influence on the electrophysiology of the heart. Conductivity imaging of the breast has been of special interest as an alternative or supplementary diagnostic method to X-ray mammography. MREIT imaging of the breast is worth further investigation.

There are numerous organs in the abdomen. We may expect conductivity contrasts in those organs related to gastric juices, blood and water content, inflammation, pathology of tissues, and so on. Organs of special interest may include the liver, gallbladder, kidney, spleen, stomach, and small and large intestines. For the pelvic region, conductivity imaging of the prostate is particularly promising for classification of prostate cancer and benign prostatic hyperplasia [37].

It is premature to affirm that MREIT is of clinical value. Most of all, imaging experiments of various diseased animal models must be undertaken to promote clinical trials. We should identify clinical problems where conductivity images may add a significant diagnostic value. These experimental validation studies demand technical progress in terms of specialized MREIT pulse sequences and RF coil. The spin echo pulse sequence has been widely used in MREIT and produces postmortem and in vivo conductivity images of animal and human subjects [25–27, 30]. The image quality depends on the SNR of the measured magnetic flux density image. In order to reduce scan time and current amplitude, while keeping image quality, we are developing a fast pulse sequence for MREIT. MREIT must also be accompanied by recent technical advancements in general MRI technology. Providing cross-sectional conductivity images with a spatial resolution of a few millimeters, we expect MREIT to deliver unique diagnostic information.

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 20100018275).

References

Biographies of the respected authors, Hyung Joong Kim, Young Tae Kim, Woo Chul Jeong, Atul S. Minhas, Chae Young Lim, and Hee Myung Park, were not available at the time of publication.

Eung Je Woo received B.S. and M.S. degrees in Electronic Engineering from Seoul National University in 1983 and 1985, respectively. He joined the BME group at the University of Wisconsin–Madison in 1986 and received his Ph.D. degree in 1990. From 1990 to 1999, he was with the BME department at Konkuk University as Assistant and Associate. In 1999, he moved to Kyung Hee University as Professor, where he has been teaching bioinstrumentation and doing research in electrical impedance imaging, the modeling of bioelectromagnetism, and instrumentation. He is a life-time member of the KOSOMBE and a senior member of the IEEE. In 2010, he was elected as an AdCom member of the IEEE EMBS, representing the Asia–Pacific region. He was Chairman of the scientific program committee for the WC2006. For the IEEE EMBC09, he served as Co-chairman of the biomedical imaging and image processing theme.