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Abstract 
Unraveling the complex interplay between nutrients and drugs via their effects on “omics” features could revolutionize our fundamental 
understanding of nutritional physiology, personalized nutrition, and, ultimately, human health span. Experimental studies in nutrition 
are starting to use large-scale “omics” experiments to pick apart the effects of such interacting factors. However, the high dimensionality 
of the omics features, coupled with complex fully factorial experimental designs, poses a challenge to the analysis. Current strategies for 
analyzing such types of data are based on between-feature correlations. However, these techniques risk overlooking important signals 
that arise from the experimental design and produce clusters that are hard to interpret. We present a novel approach for analyzing high-
dimensional outcomes in nutriomics experiments, termed experiment-guided NutriOmics DatA cLustering (‘eNODAL’). This three-step 
hybrid framework takes advantage of both Analysis of Variance (ANOVA)-type analyses and unsupervised learning methods to extract 
maximum information from experimental nutriomics studies. First, eNODAL categorizes the omics features into interpretable groups 
based on the significance of response to the different experimental variables using an ANOVA-like test. Such groups may include the 
main effects of a nutritional intervention and drug exposure or their interaction. Second, consensus clustering is performed within 
each interpretable group to further identify subclusters of features with similar response profiles to these experimental factors. Third, 
eNODAL annotates these subclusters based on their experimental responses and biological pathways enriched within the subcluster. 
We validate eNODAL using data from a mouse experiment to test for the interaction effects of macronutrient intake and drugs that 
target aging mechanisms in mice. 
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Introduction 
Nutrition is a powerful determinant of health and disease, but 
disentangling the single and interactive influences of nutrients 
and other dietary constituents poses considerable challenges, 
which are overlooked in conventional one-nutrient-at-a-time 
approaches [1, 2]. Adding to this complexity is the fact that 
nutritional requirements differ with genotype, development, 
infection, and other environmental circumstances [3]. Diet may 
also interact with non-nutritional factors such as drug treatments 
[4]. Understanding how nutrients interact with one another and 
with such external factors to affect multiple levels of physiology 
and health is at the forefront of nutriomics, precision medicine, 
and public health. 

Preclinical nutrition science is now equipped with conceptual 
frameworks and multifactorial experimental designs [5], such as 

the geometric framework for nutrition (GFN) [6], that can sep-
arate nutrient–nutrient and nutrient–non-nutrient interactions 
and map response surfaces for different traits (from molecular to 
life-history responses) in n-dimensional nutrient space. Adding to 
this explanatory power is our ability to readily measure a myr-
iad of “intermediary” phenotypes as produced from large-scale 
“omics” experiments. These outcomes generate insights into how 
experimental factors interact to determine health. The challenge 
now is how best to analyze the datasets produced from these 
multifactorial experiments, where the number of omics features 
tends to be much larger than the sample size [5, 7]. 

A common strategy to address this challenge is to group the 
high-dimensional omics features into highly correlated clusters 
and then analyze the relationship between these clusters and 
experimental factors. Examples of this approach are weighted 
correlation network analysis [8] and ClustOfVar [9], which use
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Table 1. Description of the variables in the experiments 

Variable Notation Description 

Nutrition features W A matrix of nutrition intake includes four columns of continuous variables: protein, carbohydrate, 
fat, and energy intake. 

Treatment D A discrete variable of four levels of drug treatment: control, metformin, rapamycin, and resveratrol 
Proteomics feature Z A matrix of proteomics measurements for each mouse with 4987 columns of continuous variables 

where each column represents a protein. 

unsupervised clustering of omics features based on correlation 
structure or their abundance value. Such methods have been 
widely used to analyze genomics and proteomics data [ 10]. 
However, in the case of a multifactorial nutritional experiment, 
these unsupervised clustering methods do not account for the 
experimental structure; therefore, resulting clusters could be 
confounded with the study design. An illustrative example of 
this problem is as follows (shown in Fig. S1). Consider the case 
where the abundance of two proteomic features, A and B, respond 
differently to the nutrient exposure in the presence of Drug 1 
versus Drug 2. Despite responding differently to the experimental 
design, the marginal Spearman correlation of the two features can 
still be high (e.g. 0.74 in Fig. S1). As a consequence, the majority 
of unsupervised learning algorithms would readily group these 
proteins together. A further complication of using unsupervised 
clustering methods in the context of experimental nutrition 
science is that they do not provide a biological interpretation 
of the resulting clusters, which makes it hard to understand how 
experimental factors affect the responses to feature clusters [11]. 

We propose a novel statistical workflow for an experiment-
guided NutriOmics DAta cLustering framework, which we coin 
eNODAL. This eNODAL workflow first uses an ANOVA-like model 
to distinguish whether an omics feature (e.g. a protein) shows 
significant response to the experimental design such as addi-
tive effects of a nutritional intervention (e.g. dietary carbohy-
drate) and some other external factors (e.g. drug exposure, genetic 
manipulation) or their interaction. Subsequently, a consensus 
clustering method is performed to further identify subclusters of 
features with similar response profiles. Finally, these subclusters 
are annotated based on both experimental response and path-
way enrichment. This hybrid framework aims to capture both 
the effects of experimental treatments and similarities in the 
profiles of molecular features. Using data from a recent multidiet 
GFN study in mice [12], we demonstrate how eNODAL clusters 
proteomics features based on their response to an experiment 
involving drug–diet interactions and can then link these features 
to key phenotypes related to metabolic health. Using eNODAL, 
we identify 29 interpretable proteomics subclusters representing 
different responses to nutrient intake, drug exposure, and their 
interaction (i.e. proteins whose response to nutrient intake was 
substantially altered by drug exposure). Demonstrating the power 
of eNODAL, one such interactive subcluster, comprising proteins 
that are involved in the key activated protein kinase (AMPK) path-
way, would not have been identified via ANOVA or correlation-
based clustering methods alone. 

Material and methods 
Data 
The data used come from an experimental study on the interac-
tive effects of dietary macronutrients and gerotherapeutic drugs 
in mice [12]. In summary, male C57BL/6 J mice were kept on 1 of 

10 different diets. The diets were designed to span across mul-
tidimensional nutrient space (protein, carbohydrate, fat, energy 
density), using the GFN. Each diet comprised one of five different 
ratios of macronutrients (i.e. % energy from protein, carbohy-
drate, and fat) and was replicated at two energy densities (8 
and 14.8 kJ/g), with cellulose being used as the indigestible and 
bulking agent to control energy density. Layered over this mul-
tidimensional nutritional design, animals were also on a control 
(no-drug) treatment or one of three gerotherapeutic: metformin, 
rapamycin, or resveratrol. Thus, the experimental design included 
10 diets (five macronutrient ratios across two energy densities) 
and four treatment groups (control, metformin, rapamycin, and 
resveratrol). Key metabolic traits, food intake, and the intake of 
individual macronutrients were measured, and the abundance 
of the liver proteome was quantified. The variables involved are 
shown in Table 1. 

Experiment-guided nutriomics data clustering 
method 
eNODAL hierarchically groups high-dimensional omics features 
guided by experimental factors (Fig. 1 and Supplementary Fig. S2 
available online at http://bib.oxfordjournals.org/). eNODAL 
has three key steps: an ANOVA-like test categorizes omics 
features into interpretable groups based on significant effects of 
treatments and/or their interactions (section ANOVA-like Test). 
Second, a consensus clustering method further divides these 
interpretable groups into subclusters to reflect distinct patterns 
of omics features (section Consensus Clustering). Finally, these 
subclusters of features are annotated in two ways: [1] experi-
mental responses (section Annotate Subclusters by Interpretable 
Features), and [2] pathway enrichment (section Annotate 
Subclusters by Pathway Enrichment Analysis). 

Two-stage clustering 
The eNODAL framework uses a two-stage clustering method to 
group the high-dimensional omics features into subclusters. We 
will describe the details of each stage in the following sections. 

ANOVA-like test 
The development of the first step ANOVA-like test is inspired by 
a nonparametric ANOVA method, which was first proposed to 
classify genes into different groups based on their factor effect 
[13]. We extend this method to categorize the proteomics features 
based on their response to a group of continuous variables (nutri-
tion features) and a four-level categorical factor (drug treatment). 
We further consider the relationships among nutrition (contin-
uous variables), treatment (four-level categorical variable), and 
proteomics features (continuous variables). The nonlinear version 
can be found in Supplementary Notes. We define the five nested 
models (M1, M2, . . . , M5) as follows: 

M1 :  zijk = μj + wiβj + αjk + wiγjk + εijk,
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Figure 1. A schematic workflow for eNODAL showing four different stages. (a) Input of eNODAL including nutrition data, drug intake, omics data and 
metabolic phenotypes; (b) categorize omics features into interpretable groups derived from the experimental design by ANOVA-like test; (c) divide 
interpretable groups into subclusters via ensemble clustering; and (d) annotate subclusters based on their experimental responses and pathway 
enrichment analysis. 
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M2 :  zijk = μj + wiβj + αjk + εijk, 

M3 :  zijk = μj + αjk + εijk, 

M4 :  zijk = μj + wiβj + εijk, 

M5 :  zijk = μj + εijk, 

where zijk is the jth proteomics feature for the ith sample that 
received the kth gerotherapeutic drugs (k = 1 represents the 
control group); μ is the overall effect; αjk is the kth treatment effect 
on jth protein (in the mouse nutrition study, we have four different 
treatments corresponding to different drug intake); wi is the 
nutrition features of ith sample; and βj and γjk are the effect size of 
the relationships between nutrition and proteomics features. For 
M1, βj and γjk are used to account for the main effects of treatment 
and nutrition as well as their interaction. For M2, βj represents 
the contribution of nutrition intake. Proteins of M2 are affected 
by both nutrition and drugs, but their effects are independent. 

Next, we categorize all proteins into five interpretable groups. 
Each group corresponds to one of the above five nested models, 
that is, M1, M2, . . .  , M5, based on ANOVA-like testing as described 
below. We denote the set of all proteomics features as S. 

The ANOVA-like testing proceeds as follows: 

(1) First, we identify proteins whose abundance is affected by 
either nutrition or treatment. This is achieved by the Local 
Consistency (LC) test [14, 15], which tests whether the effect 
of nutrition and treatment is significantly different from ran-
domly permuted protein abundance. This is corresponding 
to test M5 (H0 : αjk = βj = γjk = 0, ∀j, k) versus  M1(H1 : at 
least one parameter not equal to zero). Features that show a 
significant response are assigned to the cluster “sig,” denoted 
as C0, and otherwise are assigned to the cluster “nonsig” 
(S\C0). 

(2) For the proteins in cluster “sig,” we use a nested ANOVA test 
to test whether the interaction effect in M1 is significant. 
That is, we test for each proteomics feature, H0: γj1 = γj2 = 
γj3 = γj4 = 0, which corresponds to M2 versus H1: at least  
one γjk is not equal to zero (M1). The set of proteins with a 
significant interaction effect is denoted as Cint ⊂ C0. 

(3) For the proteins in the set C0\Cint, we  fit  M3 and M4 to 
test whether coefficients αjk and βj is significant, which is 
corresponds to test for each j, H0: αjk = 0∀k, (M4) versus  H1: 
at least one αjk �= 0 (M2), and for each j, H0: βj = 0 (M3) versus  
H1: βj �= 0 (M2), respectively. Such a test also can be done 
via nested ANOVA tests. Proteins with αjk �= 0 and  βj = 0 are  
classified as cluster “D,” denoted as CD, and those with αjk = 
0 and  βj �= 0 are classified as group “N,” denoted as CN. 

(4) All proteins in C0\ (Cint ∪ CN ∪ CD) form the “N + D” group. 

After fitting the models and calculating the P-value, we use 
a hierarchical  P-value adjustment to correct the P-value. Then, 
the Bonferroni method is used to control the false discovery 
rate. Through this procedure, we classify the proteins into five 
interpretable groups, i.e. “N × D” (M1), “N + D” (M2), “N” (M3), 
“D” (M4), and “nonsig” (M5). A summary of the comparison, null 
hypothesis, and test statistics for each step can be found in 
Table S2. 

Consensus clustering 
Based on the categorized five interpretable groups, we further 
divide the groups into subclusters using unsupervised clustering 
methods. We use a consensus clustering method with differ-
ent types of distance measurements (Supplementary Notes, 

Section 4 and Fig. S3) and varieties of clustering methods 
including affinity propagation [16], Louvain clustering based on 
the k-nearest neighbor graph [17], a dynamic tree cut method for 
hierarchical clustering [18], and density-based spatial clustering 
of applications with noise [19]. These methods use a data-
driven way to find the number of clusters and adapt well to the 
complexity of individual datasets. 

Then, a consensus matrix is created based on each individual 
clustering result. A binary similarity matrix is constructed from 
the corresponding clustering labels: if two features belong to 
the same cluster, their similarity is 1; otherwise, their similarity 
is 0. Finally, the resulting consensus matrix is clustered using 
the Louvain algorithm to get the resulting subclusters for each 
interpretable group. 

Subcluster annotation 
After two-stage clustering, we annotate these subclusters from 
two perspectives: first, from three sets of interpretable features 
described in the section Calculate Interpretable Features for Each 
Protein, and second, from pathway enrichment analysis. The 
details of the annotations of each subcluster are presented below. 

Calculate interpretable features for each protein 
Let zijk denote the jth proteomics measurement in the kth drug 
treatment group (k = 1, . . . , 4, where  k = 1 represents the control 
group), the corresponding lth nutrition intake is denoted wlk, and  
zj =

(
zj1, zj2, zj3, zj4

)
,wl = (wl1, wl2, wl3, wl4). In the mouse nutrition 

study, we focus on four nutrition intake features l = 1, 2, 3, 4, 
i.e. raw food intake in grams, and protein, carbohydrate, and fat 
intake in kilojoules. Two sets of interpretable features for the jth 

proteomics measurements are described in the following. 
Set 1: We first calculate the Fisher’s z-test statistic, Zjl (l = 

1, 2, 3, 4) from the correlation coefficients of the proteomics fea-
ture zj and nutrition feature wl: 

Zjl = 
1 
2 

ln

[
1 + cor

(
zj, wl

)
1 − cor

(
zj, wl

)
]

, 

where cor
(
zj, wl

)
is the sample correlation coefficient between 

protein zj and nutrition wl. Each interpretable feature in Set 1 is 
calculated by 1√

n−3
Zjl where n is the number of observations. 

Set 2: We then calculate the pairwise t-statistic of differential 
abundance of zjk between control

(
k = 1

)
and each treatment 

group
(
k = 2, 3, 4

)
: 

Tjk = 
zjk − zj1√

s2 
jk/nk + s2 

j1/n1 

, 

where z̄jk and z̄j1 are the sample mean of protein abundance in 
drug group k and the control group, respectively, and sjk, sj1 and nk, 
n1 are the corresponding sample standard deviation and sample 
size respectively. Set 2 is composed of Tjk, k = 2, 3, 4. 

Set 1 shows the overall relationship between proteomics fea-
tures and nutrition features. 

Set 2 describes how liver protein abundance marginally 
changes with respect to different drugs. 

Annotate subclusters by interpretable features 
The three created sets of interpretable features reflect differ-
ent aspects of the relationship between proteomics features and 
experimental factors. We further annotate each subcluster based 
on these features. For the J subcluster, we take the annotation of
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Figure 2. Clustering result of proteomics features from eNODAL. The 4987 proteins are categorized into four interpretable groups based on an ANOVA-
like test (two inner layers). Then, it is further clustered into 29 subclusters within each group (outer layer). The numbers in each subcluster are shown 
within the round brackets. 

its interaction effect, as an example: we first transform the related 
interpretable features Z̃jlk

(
j ∈ J

)
to Fjlk as follows: 

Fjlk = 

⎧⎪⎨ 

⎪⎩ 

1, Z̃jlk > �(0.95) 
0, −�(0.95) ≤ Z̃jlk ≤ �(0.95) 
− 1, Z̃jlk < −�(0.95) 

, 

where �(·) is the cumulative distribution function of the standard 
normal distribution and �(0.95) ≈ 1.68. Then we calculate the 
proportion of Fjlk = 1 or Fjlk = −1 for proteins within subcluster 
J, i.e.  PJlk = 1 

|J|
∑

j∈J 1
(
Fjlk = 1

)
or NJlk = 1 

|J|
∑

j∈J 1
(
Fjlk = −1

)
, where  

1 (·) is the indicator function. If PJlk > 0.7, it indicates that at least 
70% of proteins in subcluster J show a significantly increased cor-
relation with the nutrition variable l in the drug group k compared 
with the correlation coefficients in the control group. Then, we 
annotate cluster J with “increased correlation with variable l in the 
drug group k.” A similar annotation procedure works for NJkl > 0.7. 

Annotate subclusters by pathway enrichment analysis 
On the other hand, we also annotate each subcluster based on the 
enrichment of pathways in this cluster. This is done by enrich-
ment analysis with the R package clusterProfiler [20], and the 
top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway is also used to describe each subcluster. 

Creating the network among proteins, 
subclusters, and phenotypes 
We first calculate the Spearman correlations between the jth 

proteomics feature and the mthmetabolic phenotype, denoted as 
ρjm. The  P-value for testing against H0 : ρjm = 0 is calculated. 
If the P-value is smaller than .01, the corresponding Spearman 
correlation is set to zero. Then we use a gene set enrichment 
analysis like the multiset test method [21] to determine the 
significance of the correlation between a subcluster and selected 
metabolic phenotype. If the P-value is smaller than .01, we put an 
edge to emphasize the link between the corresponding subcluster 
and phenotype. Proteomics features and subclusters are linked 
by proteins showing high correlation (rank top 5) with the first 
principal component of proteins in the subclusters. The resulting 
network is drawn using the R-package ggnetwork [22]. 

Results 
Categorizing omics data into interpretable 
groups derived from experiments 
In the first step of eNODAL, we categorized the high-dimensional 
proteomics features into interpretable groups based on whether 
they are significantly affected by diet, drug, and/or interactions, 
with the results shown in Fig. 2. A total of 2951 proteins out of 
4987 proteins show significant responses to nutrient and/or drug
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Figure 3. Main effect (N clusters): subclusters in the “N” group and their annotations. (a) Heatmap of the abundance of proteins in the “N” group, split by 
subclusters and annotation of each subcluster. (b–e) GFNs of the first PC of four subclusters in the ”N” group. GFN of PC1 of subclusters “N_C2,” “N_C4,” 
“N_C6,” and “N_C10,” respectively. 

exposure. Among these proteins with significant responses, the 
“N,” “N + D,” and “N × D” groups are the majority groups with 1350, 
830, and 717 proteins, respectively, whereas the “D” group only has 
53 proteins. The unbalanced number in each interpretable group 
implies nutrition shapes the largest fraction of the proteome. In 
contrast, a small number of proteins are affected solely by drug 
treatment (group “D”). That is not to say drugs have little effect 
on the proteome; rather, those effects occur either additively, or 
in a more complex interaction, with diet (i.e. in groups “N + D” 
and “N × D”). Pathway analysis ( Fig. S4) shows that RNA splic-
ing pathways are enriched in group “N” (Rank 1, P < 0.01) and 
“N + D” (Pank 2, P < .01), a finding consistent with our previous 
results [12]. For group “N × D,” the top enriched pathways are 
thermogenesis (P < .01) and carbon metabolism (P < .01). Several 
studies showed that thermogenesis is closely related to diet [23] 
and drug treatment [24]. Further, there is evidence suggesting that 
the interaction between drug and diet impacts thermogenesis [25]. 
This implies that eNODAL can group proteomics features based 
on their response to experimental factors. 

Dividing interpretable groups into subclusters 
reveals different patterns of the proteomics 
features 
To further identify clusters of proteins with similar patterns, the 
consensus clustering step of eNODAL subdivided the four broad 
groups of experimental responses. For the “N” group, we obtain 
10 subclusters. Figure 3 shows that these subclusters all have 
contrasting correlations with the different nutritional dimensions 
in the experiment (Fig. 3a). For example, Subcluster 5 in the “N” 
group (“N_C5”) comprises 144 proteins, the majority of which 

negatively correlate with total food intake in grams but positively 
correlate with carbohydrate and fat intake in kilojoules. Pathway 
analysis indicates that the peroxisome pathway, which is known 
to be related to lipid metabolism [12, 26], is enriched in this 
subcluster of proteins. To visualize the effects of nutrient intake 
on within-subcluster protein abundance, we apply the surfaces-
based approach from the GFN to the first principal component 
(PC1) of abundance within each cluster (Fig. 3b–e). The subcluster 
“N_C5” (Fig. S5), for example, contains proteins with a higher 
abundance of elevated carbohydrate or protein intake, while the 
opposing pattern is seen in the subcluster “N_C6.” Similar results 
can be found within the much smaller “D” group, which is further 
clustered into three subclusters with different responses to drug 
treatment (Fig. S6). 

eNODAL reveals complex interplay among diet, 
drug, and metabolic pathway 
Both the “N + D” and the “N × D′′ group contain eight subclusters 
(Fig. 4a and S7). In the “N + D” group, the effects of nutrition intake 
and drug treatment are “additive” (as denoted by the “+” sign).  
Here, a combination of GFN surfaces and boxplots can be used 
to visualize associations between nutrition intake as well as drug 
treatment and the proteomics features in the cluster (Fig. S7). 

For the “N × D” group, the interaction effect between nutrition 
and drug contributes to the abundance of proteins in these sub-
clusters (i.e. the association between drug and protein abundance 
is dependent on nutrient intake). For proteins in the “N × D” 
groups, the interpretation of the effects of the drug needs to be 
evaluated with respect to the nutritional context. We visualize the 
association between nutrient intake and within-cluster protein
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Figure 4. Interaction effect (“N × D” clusters): Subclusters in the “N × D” group and their annotations. (a) Heatmap of the abundance of proteins in 
the “N × D” group, split by subclusters. (b) GFNs of the first PC of subcluster “NxD_C4.” GFNs are fitted based on the samples for each drug treatment, 
respectively, resulting in 3 (combinations of nutrients intake) × 4 (number of treatments) = 12 GFNs. 

abundance (based on PC1 for the cluster) using the GFN surfaces 
visualized for each drug group separately (e.g. Fig. 4b). Subcluster 
4 in the “N  × D” group (“N × D_C4”) contains the largest number 
of liver proteins (see Fig. 4a). For “N × D_C4” proteins, increasing 
energy intake leads to an elevated abundance of protein, but the 
presence of rapamycin and resveratrol dampens this response. In 
the meantime, we also observed an effect related to the protein– 
carbohydrate ratio (P:C) in the control group, say when energy 
intake is constant, increasing P:C tends to reduce the abundance 
of these proteins. While in drug groups, such P:C effect essentially 
disappears. We also see that the AMPK, insulin, and glucagon 
signaling pathways are enriched in this subcluster (see Fig. S8). 
This result is consistent with previous studies where the activa-
tion of AMPK, a nutrient-sensing pathway, has been related to the 
intake of metformin [27] as well as interactions between diet and 
metformin [28, 29]. 

Network analysis reveals interplay among hub 
protein, subclusters, and metabolic phenotypes 
We jointly examined relationships between proteomics features, 
subclusters, and diet-related metabolic phenotypes. This step 

directly addresses our aim of understanding how diet by drug-
affected proteins contributes to the metabolic phenotype and 
ultimately health of mice. This was achieved by creating a net-
work to link proteomic features and metabolic traits and using 
multiset tests [21] to determine the significance of any identified 
associations. This analysis shows, for example, that the “N × 
D_C4” cluster shown in Fig. 5 links closely with a large group of 
metabolic phenotypes that include body weight, fasting insulin, 
and the mass of the retroperitoneal fat pad. Several other clusters 
of liver proteins that are positively affected by total energy intake 
also link to this cluster (e.g. “N_C2,” Figs 3b–e and 5). This result 
is consistent with previous findings [12]. A particular protein of 
note is Pex11, a hub protein in subcluster “N × D_C4.” Pex11 
is positively correlated with many of the metabolic phenotypes 
(e.g. body weight and insulin levels) in our data and in previous 
studies [30]. Examination of the GFN-type surfaces for this specific 
protein mirrors those for “N × D_C4” as a whole (Figs 4b and S9), 
and Pex11 has been shown to be drug–diet responsive in other 
studies [31, 32]. 

We also observed that the incremental area under the curve 
for insulin (iAUC) is associated with two proteomics subclusters. 
Both subclusters contain proteins whose abundance is elevated
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Figure 5. Network among hub proteins, subclusters, and metabolic phenotypes: nodes represent subclusters, hub proteins, and metabolic phenotype, 
respectively. Edges between subclusters and proteins determined by top five proteins correlated with the first principal component of the subcluster. 
Edges between subclusters and metabolic phenotypes are determined by a multiset test. Positive and negative correlations are calculated based on the 
correlation between the median of the subcluster and metabolic phenotype. 

under rapamycin exposure (“D_C1” and “N + D_C4”). Several pre-
vious studies have noted that rapamycin exposure decreases glu-
cose tolerance in rodents [ 33, 34]. Complementing this literature, 
eNODAL has identified that rapamycin may decrease glucose 
tolerance (i.e. increase the iAUC) by increasing the abundance of 
a suite of liver proteins (Fig. 5). 

Application of eNODAL on nutrition-microbiome 
data reveals the association between diet intake 
and abundance of Alistipes 
To assess the generalizability of eNODAL, we applied it to an 
additional four nutrition–microbiome studies [35–38] to jointly 
examine the relationship between nutrition intake, sex, and their 
interaction influence the abundance of gut microbiota. Details 
of the datasets and processing can be found in Supplementary 
Notes, Section 7 and Table S1. Here, the interaction can be inter-
preted as whether the effect of nutrition intake is different for 
males and females. Our focus was on the genus level to facilitate 
a clearer interpretation of the findings. Unlike previous analyses, 
the microbiome data did not follow a normal distribution. Con-
sequently, in the first stage of eNODAL (Two-stage Clustering), we 
employed the nonparametric ANOVA method [13]. We pointed out 
that other test methods tailored for microbiome data, such as 
ALDEx2 [39] and  ANCOM [40], could also be utilized in this stage. 

The results of eNODAL are shown in Fig. S11. Contrary to find-
ings from previous mouse proteomics studies, these microbiome 
data exhibited fewer associations with nutrition intake, with more 
genera showing no significant associations (40/138, 6/33, 57/108, 
and 22/125 of significant genera for each dataset, respectively). 
Additionally, a notable observation across all four datasets was 
the absence of a significant interaction effect between nutrition 
and sex on the microbiome, suggesting similar gut microbial 
responses to nutrition in males and females. 

Among the significant associations identified, Alistipes consis-
tently demonstrated a significant link with nutrition intake across 
all studies, as illustrated by the GNF of Alistipes in Fig. S12. Previous  
research has underscored the close relationship between the 
abundance of Alistipes and nutrient intake, particularly protein 
[41], fat [42, 43], and carbohydrate [44]. Furthermore, previous 
analysis also showed that Alistipes serves as a mediator between 
fat intake and body mass index [45]. These findings collectively 
highlight the adaptability and utility of the eNODAL framework in 
uncovering complex relationships between nutrition, omics data, 
and phenotypes. 

Discussion 
We present a three-step hybrid procedure called eNODAL, which 
integrates experimental structure with high-dimensional “omics”
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features in fully factorial nutritional studies. This framework 
first categorizes the features into interpretable groups based on 
response to experimental treatments before a consensus further 
divides these interpretable groups into subclusters with simi-
lar abundance profiles. Finally, we annotate these subclusters 
based on their experimental responses as well as enrichment of 
biological pathways. Demonstrating the power of eNODAL, we 
have analyzed data from a preclinical mouse experiment testing 
for interactions between diet and gerotherapeutic drugs affect-
ing metabolic health and the liver proteome. Within these data, 
eNODAL obtained 29 subclusters of proteomics features repre-
senting different biological pathways. A number of these subclus-
ters validate alternative analyses of the data, such as detecting the 
effects of the treatments on the spliceosome [12]. Furthermore, 
several of our results correlate with and complement findings 
from other studies on the effects of diet and gerotherapeutic 
drugs. For example, we see a negative effect of rapamycin on 
glucose homeostasis and demonstrate that these changes co-
occur with the effects of the drug on a cluster of specific live 
proteins. 

When exploring an n-dimensional nutrition space, this 
flexibility is likely to be important. Several studies [14, 15] 
have detected associations between nutrient intake and gene 
expression that could be nonlinear. We have therefore also 
implemented a hypothesis test using nonparametric generalized 
additive models (GAMs) [46–50], as well as a testing procedure to 
decide whether the use of a nonlinear GAM significantly alters 
the results relative to using a linear model (see Supplementary 
notes, Sections 1 and 2). In our example dataset, only 2% of 
proteins preferred GAM to the linear model. However, in other 
settings where many nonlinear relationships exist, the use of 
GAM in the first stage is likely to be more appropriate. A further 
discussion about the extension of eNODAL framework can be 
found in Supplementary Notes, Section 8. 

The results from eNODAL provided more biological insights 
into the complex interplay between diet, drug, hepatic proteome, 
and metabolic phenotype. On the one hand, eNODAL is able to 
identify RNA splicing pathways enriched in the “N” group, which 
were also found in our previous work. Furthermore, eNODAL iden-
tifies biological pathways related to interaction effects between 
nutrition and drugs, such as thermogenesis and AMPK pathways. 
Thermogenesis is closely related to the brown adipose tissue 
system and has shown its important role in the regulation of 
body temperature [51]. Different types of diet, such as a high-fat 
diet and/or high-protein diet, as well as the intake of drugs, may 
affect thermogenesis by altering metabolism [23, 52]. The AMPK 
pathway is also central to metabolic regulation, including energy 
production and storage and synthesis of fatty acids and choles-
terol. The activation of AMPK pathways could be induced both by 
diet and drug intake [53–55]. Understanding the complex interplay 
among diet, drugs, as well as related metabolic pathways, can help 
to optimize the effects of these substances on the regulation of the 
body system. 

Key Points 
• eNODAL provides an interpretable framework to catego-

rize high-dimensional omics data, incorporating experi-
mental design. 

• eNODAL leverages a two-stage clustering strategy 
combining nonparametric ANOVA and unsupervised 

machine learning methods to offer a comprehensive 
annotation of resulting clusters, including both experi-
mental response and pathway information. 

• eNODAL facilitates the analysis of relationships among 
experimental conditions, omics features, and phenotype 
outcomes. 

• Application of eNODAL on mouse proteomics data iden-
tified subclusters significantly affected by the interac-
tion between nutrition intake and drug treatment. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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