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ABSTRACT
Interactions between derivatives and fixpoints have many impor-

tant applications in both computer science and mathematics. In this

paper, we provide a categorical framework to combine fixpoints

with derivatives by studying Cartesian differential categories with

a fixpoint operator. We introduce an additional axiom relating the

derivative of a fixpoint with the fixpoint of the derivative. We

show how the standard examples of Cartesian differential cate-

gories where we can compute fixpoints provide canonical models

of this notion. We also consider when the fixpoint operator is a

Conway operator, or when the underlying category is closed. As

an application, we show how this framework is a suitable setting to

formalize the Newton-Raphson optimization for fast approximation

of fixpoints and extend it to higher order languages.

CCS CONCEPTS
• Theory of computation → Categorical semantics; •Mathe-
matics of computing → Differential calculus.

KEYWORDS
Categorical semantics, Cartesian differential categories, fixpoint

operators
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1 INTRODUCTION
Fixpoint theory hasmany applications for establishing the existence

and uniqueness of solutions for systems of differential and integral

equations. Dually, using the information provided by derivatives to

approximate more efficiently fixpoints is a key tool in numerical

analysis, data-flow analysis, automatic differentiation, enumerative

combinatorics, formal language theory, etc. A well-known example

is the Newton-Raphson method for fast approximation of roots

or fixpoints of differentiable functions. Starting from an initial

point, the main idea is to compute the next iteration by using the

tangent line. It is a powerful technique as the convergence rate is
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quadratic: at each iteration, the number of accurately computed

digits doubles. Many other standard optimizationmethods are based

on generalizations or variants of the Newton-Raphson method.

From the viewpoint of programming languages, fixpoints are a

key feature as they allow for the presence of loops and defining

programs via recursion or iteration. Incorporating recursive fea-

tures into differential programming languages has seen increasing

interest in recent years [1, 19, 53] and there is already a rich liter-

ature on implicit automatic differentiation to perform automatic

differentiation efficiently on functions defined implicitly by fixpoint

equations [4, 6, 35].

While the categorical semantics of differentiation and fixpoints

are now well-established lines of research, one aspect that has not

yet been studied in full detail is the interaction between them from

a semantical viewpoint. The objective of this paper is to develop a

denotational framework to combine fixpoints with derivatives by

axiomatizing the notion of Cartesian differential categories with

a fixpoint operator. This axiomatization provides a guideline to

introducing differentials to 𝜆-calculi with fixpoint operators such

as PCF [56] and the 𝜆-Y-calculus [62].

Cartesian differential categories (Def 2.1) were introduced by

Blute, Cockett, and Seely in [9], and provide the categorical founda-

tions of multivariable differential calculus. Cartesian closed differ-

ential categories (Sec 6) provide the categorical semantics of the dif-

ferential 𝜆-calculus, introduced by Ehrhard and Regnier [11, 22, 52].

Cartesian (closed) differential categories have been quite success-

ful in formalizing various notions related to differentiation, and

have also found numerous applications in both mathematics and

computer science. Moreover, Cartesian differential categories be-

long to a larger story of categorical foundations of differentiation,

which include differential categories [8], coherent differential cate-

gories [23], reverse differential categories [15], differential restric-

tion categories [14], and tangent categories [13].

In this paper, we show how to combine the differential operator

in a Cartesian differential category with various categorical no-

tions of fixpoint operators [7, 37, 38, 40, 59] such as parametrized

fixpoint operators (Def 3.2) and Conway operators (Def 4.2). As

such, to this end, we introduce Cartesian differential fixpoint cate-
gories (Def 3.3), which are Cartesian differential categories equipped
with a parametrized fixpoint operator which satisfies what we call

the differential-fixpoint rule (4) describing the derivative of the

parametrized fixpoint.

To help understand the differential-fixpoint rule, let us provide

some intuition using ordinary calculus. Consider the smooth func-

tion 𝑓 : R×R → R defined as 𝑓 (𝑥,𝑦) := 1−𝑥2𝑦. Then the function

𝑔 : R → R defined as 𝑔(𝑥) := 1

1+𝑥2
is a solution of the fixpoint or

implicit equation

𝑔(𝑥) = 𝑓 (𝑥,𝑔(𝑥)). (1)
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If we differentiate both sides, using the chain rule on the right-hand

side, we obtain:

𝑔′ (𝑥) = 𝜕𝑓

𝜕𝑥
(𝑥,𝑔(𝑥)) + 𝜕𝑓

𝜕𝑦
(𝑥,𝑔(𝑥)) · 𝑔′ (𝑥) (2)

Provided that
𝜕𝑓
𝜕𝑦 (𝑥, 𝑔(𝑥)) ≠ 1, we may rewrite (2) as:

𝑔′ (𝑥) =
(
1 − 𝜕𝑓

𝜕𝑦
(𝑥,𝑔(𝑥))

)−1
𝜕𝑓

𝜕𝑥
(𝑥, 𝑔(𝑥)) = −2𝑥

(1 + 𝑥2)2

relating the derivative of 𝑓 with the derivative of its fixpoint. This

is the basis of many iteration schemes to compute or approximate

the derivative of a fixpoint such as the Newton-Raphson method. If

we combine the equations (1) and (2), we obtain that the function

T(𝑔) : R × R → R × R defined as T(𝑔) (𝑥, 𝑎) = (𝑔(𝑥), 𝑔′ (𝑥) · 𝑎) is a
fixpoint for the function T(𝑓 ) : R ×R ×R ×R → R ×R defined as:

T(𝑓 ) (𝑥,𝑦, 𝑎, 𝑏) =
(
𝑓 (𝑥,𝑦), 𝜕𝑓

𝜕𝑥
(𝑥,𝑦) · 𝑎 + 𝜕𝑓

𝜕𝑦
(𝑥,𝑦) · 𝑏

)
. (3)

This T operation is called the tangent bundle functor (Def 2.2), and
can be defined in any Cartesian differential category (it corresponds

to the tangent bundle in algebraic geometry and to the Jacobian

vector product in forward differentiation). Therefore, computing

the derivative of the fixpoint of 𝑓 is equivalent to computing the fix-

point of T(𝑓 ), and this is the property we axiomatize for Cartesian

differential categories.

Outline: Sec 2 is a background section where we review Carte-

sian differential categories. In Sec 3, we study the compatibility

relation between parametrized fixpoint operators and differential

combinators, and introduce Cartesian differential fixpoint cate-

gories. In Sec 4, we consider the case of Conway operators, and

prove an equivalence between various axioms relating derivatives

and fixpoints. In Sec 5, we study the relation between fixpoints

and linearity. In Sec 6, we consider the Cartesian closed setting. In

Sec 7, we provide many examples of Cartesian differential fixpoint

categories. In Sec 8, we provide an application by extending the

Newton-Raphson optimization method to our setting. We conclude

in Sec 9 with a discussion about future work.

Related works: In [21, Thm 5.29], Ehrhard proves a compati-

bility relation in a cpo-enriched setting between the least fixpoint

operator (in the coKleisli category) and the tangent bundle func-

tor of a Scott coherent differential category. In [61], Sprunger and

Katsumata construct Cartesian differential categories with delayed

trace operators, which are related to trace operators but no longer

assume the fixpoint axiom.

Conventions:We assume the reader is familiar with basic no-

tions of category theory such as categories, functors, products, etc.

An arbitrary category will be denoted by C, with arbitrary objects

denoted by capital letters 𝐴, 𝐵,𝑋,𝑌 , etc. and maps by minuscule

letters 𝑓 , 𝑔, ℎ, etc. Hom-sets are denoted as C(𝐴, 𝐵), arbitrary maps

as 𝑓 : 𝐴 → 𝐵, identity maps as 1𝐴 : 𝐴 → 𝐴, and we use the stan-

dard notation ◦ and convention for composition (unlike in other

Cartesian differential papers which use diagrammatic order).

2 CARTESIAN DIFFERENTIAL CATEGORIES
In this background section, we review Cartesian differential cat-

egories. For a more in-depth introduction, we refer the reader

to [9, 16, 34, 48, 50].

The underlying structure of a Cartesian differential category is

that of a Cartesian left additive category, which can be described

as a category with finite products which is skew-enriched over

the category of commutative monoids [34]. More explicitly, a left
additive category [9, Def 1.1.1] is a categoryC such that each hom-

set C(𝐴, 𝐵) is a commutative monoid (written additively), so we

have zero maps 0 and can take the sum of maps 𝑓 +𝑔, however only
pre-composition preserves the additive structure, that is, (𝑓 +𝑔)◦𝑥 =

𝑓 ◦ 𝑥 + 𝑔 ◦ 𝑥 and 0 ◦ 𝑥 = 0. Maps 𝑓 which do preserve the additive

structure, that is, 𝑓 ◦ (𝑥 + 𝑦) = 𝑓 ◦ 𝑥 + 𝑓 ◦ 𝑦 and 𝑓 ◦ 0 = 0, are

called additive maps [9, Def 1.1.1]. Then a Cartesian left additive

category is a left additive category with finite products which is

compatible with the additive structure. For a category C with finite

products, we denote the product by ×, the projection maps as 𝜋 𝑗 :

𝐴1 × . . . ×𝐴𝑛 → 𝐴 𝑗 , the pairing operation by ⟨−, . . . ,−⟩, and the

terminal object by ⊤. Then a Cartesian left additive category
[9, Def 1.2.1] is a left additive category C which has finite products

and such that all the projection maps are additive.

A Cartesian differential category is a Cartesian left additive cate-

gory equipped with a differential combinator, which is an operator

which sends maps to their derivative. In this paper, it is important

to note that we follow the now more widely used convention used

for Cartesian differential categories which flips the convention used

in [9], so that the linear argument of the derivative is in the second

argument rather than in the first.

Definition 2.1. A Cartesian differential category [9, Def 2.1.1] is

a Cartesian left additive category C equipped with a differential
combinator D, which is a family of functions indexed by pairs of

objects in C:

D : C(𝐴, 𝐵) → C(𝐴 ×𝐴, 𝐵)
𝑓 : 𝐴 → 𝐵

D[𝑓 ] : 𝐴 ×𝐴 → 𝐵

such that the seven following axioms hold:

[CD.1] D[𝑓 + 𝑔] = D[𝑓 ] + D[𝑔] and D[0] = 0;

[CD.2] D[𝑓 ] ◦ ⟨𝑥, 0⟩ = 0 and

D[𝑓 ] ◦ ⟨𝑥,𝑦 + 𝑧⟩ = (D[𝑓 ] ◦ ⟨𝑥,𝑦⟩) + (D[𝑓 ] ◦ ⟨𝑥, 𝑧⟩)
[CD.3] D[1𝐴] = 𝜋2 and D[𝜋 𝑗 ] = 𝜋𝑛+𝑗
[CD.4] D[⟨𝑓1, . . . , 𝑓𝑛⟩] = ⟨D[𝑓1], . . . ,D[𝑓𝑛]⟩
[CD.5] D[𝑔 ◦ 𝑓 ] = D[𝑔] ◦ ⟨𝑓 ◦ 𝜋1,D[𝑓 ]⟩
[CD.6] D [D[𝑓 ]] ◦ ⟨𝑥,𝑦, 0, 𝑧⟩ = D[𝑓 ] ◦ ⟨𝑥, 𝑧⟩
[CD.7] D [D[𝑓 ]] ◦ ⟨𝑥,𝑦, 𝑧, 0⟩ = D [D[𝑓 ]] ◦ ⟨𝑥, 𝑧,𝑦, 0⟩

For a map 𝑓 : 𝐴 → 𝐵, the map D[𝑓 ] : 𝐴 × 𝐴 → 𝐵 is called the

derivative of 𝑓 .

The axioms of a differential combinator are analogues of the basic

properties of the total derivative from multivariable differential

calculus. The axioms say that: (1) the derivative of a sum is the

sum of the derivatives, (2) derivatives are additive in their second

argument, (3) the derivative of identity maps and projections are

projections, (4) the derivative of a pairing is the pairing of the

derivatives, (5) the chain rule for the derivative of a composition,

(6) the derivative is linear in its second argument, and lastly (7) is

the symmetry of the partial derivatives. The term linear refers to

the canonical notion of linearity in a Cartesian differential category,

which we discuss in Sec 5. There is a sound and complete term

calculus for Cartesian differential categories [9, Sec 4], which is
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useful for intuition and proofs. So we write:

D[𝑓 ] (𝑎, 𝑏) := d𝑓 (𝑥)
d𝑥

(𝑎) · 𝑏

In particular, the chain rule axiom is expressed as:

d𝑔 (𝑓 (𝑥))
d𝑥

(𝑎) · 𝑏 =
d𝑔(𝑦)
d𝑦

(𝑓 (𝑎)) ·
(
d𝑓 (𝑥)
d𝑥

(𝑎) · 𝑏
)

Arguably, the canonical example of a Cartesian differential cat-

egory is the category of real smooth functions, whose differen-

tial combinator is given by the standard differentiation of smooth

functions [16, Ex 2.10]. In Sec 6, we will discuss Cartesian closed
differential categories, which are particularly important since they

provide the categorical semantics of the differential 𝜆-calculus [11]

– though closed structure does not play a crucial role for the story of

this paper. In Sec 7, we provide other examples of Cartesian differ-

ential categories. For lists of more examples of Cartesian differential

categories, we refer the reader to see [16, 34].

In a Cartesian differential category, the differential combinator

induces a functor called the tangent bundle functor. This functor

plays an important role in the story of this paper since, as we will

see in Sec 3, it fits very naturally with fixpoint operators. The name

comes from the fact that every Cartesian differential category is a

tangent category [13, Prop 4.7], and so this functor corresponds

to the classical tangent bundle functor for Euclidean spaces.

Definition 2.2. For a Cartesian differential category C, the tan-
gent bundle functor [48, Prop 1] is the endofunctor T : C → C
defined on objects as T(𝐴) = 𝐴 × 𝐴 and on maps as T(𝑓 ) =

⟨𝑓 ◦ 𝜋1,D[𝑓 ]⟩, which in the term calculus is expressed as:

T(𝑓 ) (𝑎, 𝑏) =
(
𝑓 (𝑎), d𝑓 (𝑥)

d𝑥
(𝑎) · 𝑏

)
Properties that the tangent bundle functor satisfies can be found

in [48, Lemma 2]. It is worthwhile to point out that the tangent bun-

dle preserves composition if and only if the chain rule of the differ-

ential combinator holds. In fact, the chain rule can be reformulated

in terms of the tangent functor bundle as: D[𝑔 ◦ 𝑓 ] = D[𝑔] ◦ T(𝑓 ).

3 COMBINING FIXPOINTS AND DERIVATIVES
In this section, we combine differential combinators and parametri-

zed fixpoint operators by studying their compatibility in an arbi-

trary Cartesian differential category, and then introduce the novel

notion of a Cartesian differential fixpoint category. For a more

in-depth introduction to categorical interpretations of fixpoint op-

erators, we refer the reader to [7, 37, 38, 59].

Let us begin by explaining why for a Cartesian differential cat-

egory, one must consider a parametrized fixpoint operator rather

than simply a basic fixpoint operator. Recall that in a category with

a terminal object, a point of an object 𝑋 is a map from the terminal

object to 𝑋 , so 𝑝 : ⊤ → 𝑋 . Then a fixpoint operator [59, Def 2.1]
is an operator fix which for every endomorphsim 𝑓 : 𝑋 → 𝑋 as-

sociates a point fix(𝑓 ) : ⊤ → 𝑋 such 𝑓 ◦ fix(𝑓 ) = fix(𝑓 ), meaning

that fix(𝑓 ) is a fixpoint of 𝑓 . Unfortunately, this kind of fixpoint

operator is in a certain sense incompatible with differential com-

binators. This is because, in a Cartesian differential category, the

derivative of a point 𝑝 : ⊤ → 𝑋 is always zero,D[𝑝] = 0. Therefore:

Lemma 3.1. In a Cartesian differential category with a fixpoint
operator, for every map 𝑓 : 𝑋 → 𝑋 , D[fix(𝑓 )] = 0.

For a Cartesian differential category, one must instead consider

parametrized fixpoint operators, which axiomatize the notion of

fixpoints for maps in context. For a map of type 𝐴 × 𝑋 → 𝑋 , the

parameter 𝐴 is viewed as representing the context of the term,

then taking the parametrized fixpoint gives a map of type 𝐴 → 𝑋 .

Parametrized fixpoint operators are axiomatized by two axioms:

the fixpoint axiom and by naturality in the context argument.

Definition 3.2. For a category C with finite products, a parame-
trized fixpoint operator [59, Def 2.2] is a family of functions fix
indexed by pairs of objects in C,

fix𝑋𝐴 : C(𝐴 × 𝑋,𝑋 ) → C(𝐴,𝑋 )
𝑓 : 𝐴 × 𝑋 → 𝑋

fix𝑋𝐴 (𝑓 ) : 𝐴 → 𝑋

such that:

1. Parametrized Fixed Point: for all maps 𝑓 : 𝐴 × 𝑋 → 𝑋 :

𝑓 ◦ ⟨1𝐴, fix𝑋𝐴 (𝑓 )⟩ = fix𝑋𝐴 (𝑓 )

2. Naturality: for all maps 𝑔 : 𝐴 → 𝐵 and 𝑓 : 𝐵 × 𝑋 → 𝑋 :

fix𝑋𝐵 (𝑓 ) ◦ 𝑔 = fix𝑋𝐴 (𝑓 ◦ (𝑔 × 1𝑋 ))

For a map 𝑓 : 𝐴 × 𝑋 → 𝑋 , the map fix𝑋
𝐴
(𝑓 ) : 𝐴 → 𝑋 is called the

parametrized fixpoint of 𝑓 .

Since we will be working with term calculus notation for Carte-

sian differential categories, we shall use the following term calculus

notation to write the parametrized fixpoint operator:

fix𝑋𝐴 (𝑓 ) (𝑎) = 𝜇𝑥 .𝑓 (𝑎, 𝑥)

where the variable 𝑥 is bounded. The notation 𝜇 here is for an

arbitrary fixpoint operator and not necessarily the least fixpoint

operator. For example, the parametrized fixpoint axiom, which says

that fix𝑋
𝐴
(𝑓 ) is a fixpoint of 𝑓 in context 𝐴, is expressed as:

𝜇𝑥 .𝑓 (𝑎, 𝑥) = 𝑓 (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥))

A well-known example of a category with a parametrized fixpoint

operator is the category of Scott domains and Scott continuous

functions [37, Ex 7.1.2], whose parametrized fixpoint operator is

given by the standard Kleene iteration formula. In Sec 6, we will

discuss parametrized fixpoint operators in Cartesian closed cate-

gories. In Sec 7, we provide other examples of parametrized fixpoint

operators. For more examples of parametrized fixpoint operators,

we refer the reader to see [37, 38].

So how should a differential combinator and parametrized fix-

point operator interact? In particular, what should the derivative

of a parametrized fixpoint be? Consider the following computation

using the parametrized fixpoint and the chain rule:

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) · 𝑏 =
d𝑓 (𝑢, 𝜇𝑥 .𝑓 (𝑢, 𝑥))

d𝑢
(𝑎) · 𝑏

=
d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) ·

(
𝑏,

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) · 𝑏
)
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From this, we see that

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), d𝜇𝑥.𝑓 (𝑢,𝑥 )d𝑢 (𝑎) · 𝑏

)
is a parametr-

ized fixpoint of T(𝑓 ) (𝑎, 𝑥, 𝑏,𝑦) in the 𝑥 and 𝑦 variables, that is:

T(𝑓 )
(
𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥), 𝑏, d𝜇𝑥 .𝑓 (𝑢, 𝑥)

d𝑢
(𝑎) · 𝑏

)
=

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), d𝜇𝑥 .𝑓 (𝑢, 𝑥)

d𝑢
(𝑎) · 𝑏

)
Thus, our compatibility relation between a parametrized fixpoint

operator and differential combinator is asking that the derivative

of the parametrized fixpoint be equal to the second component of

the nested fixpoint:

𝜇 (𝑥,𝑦).
(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
)

In other words, the derivative of the parametrized fixpoint is the

second component of the parametrized fixpoint of the tangent

bundle, up to a rearranging of variables. To make certain that this

indeed makes sense, let us check that the types work correctly.

So starting with a map 𝑓 : 𝐴 × 𝑋 → 𝑋 , taking its parametrized

fixpoint gives us fix𝑋
𝐴
(𝑓 ) : 𝐴 → 𝑋 , and so its derivative is of type

D[fix𝑋
𝐴
(𝑓 )] : 𝐴 ×𝐴 → 𝑋 . On the other hand, applying the tangent

bundle functor gives us T(𝑓 ) : 𝐴 ×𝑋 ×𝐴 ×𝑋 → 𝑋 ×𝑋 . For this to

be of the correct type to apply the parametrized fixpoint operator,

we must swap the middle two terms. So let 𝑐 = ⟨𝜋1, 𝜋3, 𝜋2, 𝜋4⟩ :

𝐴×𝐵×𝐶×𝐷 → 𝐴×𝐶×𝐵×𝐷 be the canonical isomorphism which

swaps the middle two terms. Then pre-composing by 𝑐 gives us

T(𝑓 ) ◦𝑐 : 𝐴×𝐴×𝑋 ×𝑋 → 𝑋 ×𝑋 . So we may take its parametrized

fixpoint to get a map of type fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) : 𝐴 ×𝐴 → 𝑋 × 𝑋 .

Lastly, we post-compose by the second projection to finally get

𝜋2 ◦ fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) : 𝐴 × 𝐴 → 𝑋 . When these two maps are

equal, we call this the differential-fixpoint rule and use it as our

axiom for the definition of a Cartesian differential fixpoint category.

Definition 3.3. A parametrized fixpoint operator for a Cartesian

differential category satisfies the differential-fixpoint rule if for
every map 𝑓 : 𝐴 × 𝑋 → 𝑋 , the following equality holds:

D
[
fix𝑋𝐴 (𝑓 )

]
= 𝜋2 ◦ fix𝑋×𝑋

𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) (4)

which in the term calculus is expressed as follows:

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) · 𝑏 = 𝜋2

(
𝜇 (𝑥,𝑦).

(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
))

A Cartesian differential fixpoint category is a Cartesian dif-

ferential category with a parametrized fixpoint operator which

satisfies the differential-fixpoint rule.

We can also ask how the tangent bundle functor and the parame-

trized fixpoint operator interact. From the differential-fixpoint rule,

by definition we have that:

T
(
fix𝑋𝐴 (𝑓 )

)
=

〈
fix𝑋𝐴 (𝑓 ) ◦ 𝜋1, 𝜋2 ◦ fix𝑋×𝑋

𝐴×𝐴 (T(𝑓 ) ◦ 𝑐)
〉

However, since the first component of fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) is not

necessarily fix𝑋
𝐴
(𝑓 ) ◦𝜋1, we may not have that T

(
fix𝑋

𝐴
(𝑓 )

)
is equal

to fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐). When these two are equal, we call this the

tangent-fixpoint rule.

Definition 3.4. A parametrized fixpoint operator for a Cartesian

differential category satisfies the tangent-fixpoint rule if for every
map 𝑓 : 𝐴 × 𝑋 → 𝑋 , the following equality holds:

T
(
fix𝑋𝐴 (𝑓 )

)
= fix𝑋×𝑋

𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) (5)

which in the term calculus is expressed as follows:

(𝜇𝑥 .𝑓 (𝑎, 𝑥), d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎)·𝑏) = 𝜇 (𝑥,𝑦) .(𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝑥)·(𝑏,𝑦))

It means that the Cartesian functor (𝑇, 𝑐) is a morphism of cate-

gories with parametrized fixpoint operator (Definition 1.3 in [7] in

the coCartesian setting).

It is straightforward to see that the tangent-fixpoint rule implies

the differential-fixpoint rule:

Lemma 3.5. A parametrized fixpoint operator which satisfies the
tangent-fixpoint rule also satisfies the differential-fixpoint rule.

Proof. By definition, note that 𝜋2 ◦ T(𝑓 ) = D(𝑓 ). Therefore,
post-composing both sides of (5) by the second projection 𝜋2 results

precisely in (4). □

So, a Cartesian differential category with a parametrized fixpoint

operator which satisfies the tangent-fixpoint rule is a Cartesian

differential fixpoint category. While we do not have an example

of a Cartesian differential category with fixpoint operator where

the differential-fixpoint rule holds but not the tangent-fixpoint

rule, there is no reason to assume that the converse is necessarily

true. The reason for choosing the differential-fixpoint rule over the

tangent-fixpoint rule as an axiom for Cartesian differential fixpoint

categories comes from the fact that it is the differential combinator

which is central in the definition of Cartesian differential categories

rather than the tangent bundle functor. When asking for compati-

bility regarding a structure or property on a Cartesian differential

category, it is more natural to ask what the derivatives of the nec-

essary structural or property maps are. The tangent-fixpoint rule is

more natural when considering a Cartesian differential category

instead as a tangent category [13], and will be the central axiom

for the notion of a tangent category with a parametrized fixpoint

operator (which is future work, see Sec 9). That being said, we show

that for Conway fixpoint operators these two rules are equivalent.

4 CONWAY OPERATORS AND DERIVATIVES
Fixpoint operators are closely related to the notion of trace opera-
tors. In particular, to give a trace operator for products corresponds

to providing a special kind of parametrized fixpoint operator called

a Conway operator. In this section, we study the compatibility be-

tween differential combinators and Conway operators (and trace

operators), and introduce the notion of a traced Cartesian differen-

tial category. For a more in-depth introduction to Conway operators

and trace operators, we refer the reader to [37, 38, 40].

Definition 4.1. For a category C with finite products, a trace
operator [40, Sec 2] is a family of functions Tr indexed by triples

of objects in C,

Tr𝑋𝐴,𝐵 : C(𝐴 × 𝑋, 𝐵 × 𝑋 ) → C(𝐴, 𝐵)
𝑓 : 𝐴 × 𝑋 → 𝐵 × 𝑋

Tr𝑋𝐴,𝐵 (𝑓 ) : 𝐴 → 𝑋
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which satisfy the axioms found in [37, Def 2.1].

As mentioned, for a category with finite products, giving a trace

operator is equivalent to giving a special kind of parametrized

fixpoint operator called a Conway operator. Here we provide the

axiomatization of a Conway operator as found in [37], in terms of

dinaturality and Bekič’s Axiom. Equivalent axiomatizations can be

found in [38, 59].

Definition 4.2. For a category C with finite products, a Conway
operator [37, Thm 3.1] is a parametrized fixpoint operator fix
which also satisfies:

1. Dinaturality: For all maps 𝑓 : 𝐴 × 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋

fix𝑋𝐴 (𝑔 ◦ 𝑓 ) = 𝑔 ◦ fix𝑌𝐴 (𝑓 ◦ (1𝐴 × 𝑔))
which in the term calculus is expressed as:

𝜇𝑥 .ℎ (𝑓 (𝑥, 𝑎)) = ℎ (𝜇𝑥 .𝑓 (𝑥, ℎ(𝑎)))
2. Bekič’s Axiom: For every map 𝑓 : 𝐴 × 𝑋 × 𝑌 → 𝑋 and map

𝑔 : 𝐴 × 𝑋 × 𝑌 → 𝑌 the following equality holds:

fix𝑋×𝑌
𝐴 (⟨𝑓 , 𝑔⟩) =

⟨𝜋1, fix𝑌𝐴×𝑋 (𝑔)⟩ ◦
〈
1𝐴, fix𝑋𝐴

(
𝑓 ◦ ⟨1𝐴×𝑋 , fix𝑌𝐴×𝑋 (𝑔)⟩

)〉
which in the term calculus is expressed as:

𝜇 (𝑥,𝑦) (𝑓 (𝑎, 𝑥,𝑦), 𝑔(𝑎, 𝑥,𝑦)) =
(𝜇𝑥 .𝑓 (𝑎, 𝑥, 𝜇𝑦.𝑔(𝑎, 𝑥,𝑦)) , 𝜇𝑦.𝑔(𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥, 𝜇𝑦.𝑔(𝑎, 𝑥,𝑦)), 𝑦))

While the right-hand of Bekič’s Axiom’s expression seems more

complex, it is extremely useful in practice. The idea is that Bekič’s

Axiom can be understood as a form of Gaussian elimination: solving

a system of nested fixpoint equations with multiple variables is

reduced to solving fixpoint equations with one variable at a time.

As such, Bekič’s Axiom will be key in the proofs of this section.

Most known fixpoint operators are Conway but it is possible to

construct fixpoint operators that satisfy all of the axioms but one

of the axioms in Definitions 3.2 and 4.2 [25].

For a category with finite products, there is a bijective corre-

spondence between trace operators and Conway operators [37,

Thm 3.1]. To go from a Conway operator to a trace operator, first

recall that by the universal property of the product, a map of

type 𝑓 : 𝐴 × 𝑋 → 𝐵 × 𝑋 is a tuple of maps 𝑓 = ⟨𝑓1, 𝑓2⟩ where
𝑓1 : 𝐴 × 𝑋 → 𝐵 and 𝑓2 : 𝐴 × 𝑋 → 𝑋 . Then starting with

a Conway operator fix, define the trace operator Tr on a map

𝑓 = ⟨𝑓1, 𝑓2⟩ : 𝐴 × 𝑋 → 𝐵 × 𝑋 as the following composite:

Tr𝑋𝐴,𝐵 (𝑓 ) (𝑎) = 𝑓1 (⟨1𝐴, fix𝑋𝐴 (𝑓2)⟩)
which in the term calculus is expressed as:

Tr𝑋𝐴,𝐵 (⟨𝑓1, 𝑓2⟩) (𝑎) = 𝑓1 (𝑎, 𝜇𝑥 .𝑓2 (𝑎, 𝑥))
On the other hand, starting from a trace operator Tr, define the
Conway operator fix on a map 𝑓 : 𝐴 × 𝑋 → 𝑋 as follows:

fix𝑋𝐴 (𝑓 ) = Tr𝑋𝐴,𝑋 (⟨𝑓 , 𝑓 ⟩)
As such, a category with finite products and a Conway operator is

a traced (Cartesian) monoidal category [40]. So we define:

Definition 4.3. A traced Cartesian differential category is

a Cartesian differential fixpoint category whose parametrized fix-

point operator is a Conway operator.

We wish to show that for a Conway operator, the differential-

fixpoint rule is equivalent to the tangent-fixpoint rule. To do so,

it will be useful to consider yet another equivalent rule that even

more precisely describes the derivative of the parametrized fixpoint.

Notice that when we applied the chain rule to
d𝜇𝑥.𝑓 (𝑢,𝑥 )

d𝑢 (𝑎) · 𝑏
above, we in fact showed that it was a parametrized fixed point for

d𝑓 (𝑢,𝑣)
d(𝑢,𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,−). We may then ask that it instead be

the parametrized fixpoint.

Definition 4.4. A parametrized fixpoint operator for a Cartesian

differential category satisfies the strong differential-fixpoint
rule if for every map 𝑓 : 𝐴 × 𝑋 → 𝑋 , the following equality holds:

D
[
fix𝑋𝐴 (𝑓 )

]
= fix𝑋𝐴×𝐴

(
D[𝑓 ]◦

〈
𝜋1, fix𝑋𝐴 (𝑓 ) ◦ 𝜋1, 𝜋2, 𝜋3

〉)
(6)

which in the term calculus is expressed as follows:

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) · 𝑏 = 𝜇𝑦.
d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)

We should explain why we chose the differential-fixpoint rule as

the axiom for Cartesian differential fixpoint categories instead of

the strong differential-fixpoint rule. While the strong differential-

fixpoint rule only involves the differential combinator, notice that

fix𝑋
𝐴
(𝑓 ) appears on both sides of (6). Thus while both the differ-

ential combinator and the tangent bundle functor are used in the

differential-fixpoint rule, it is slightly more natural. With all that

said, we will show that for a Conway operator, thanks to Bekič’s

Axiom, all three of these rules are equivalent.

Proposition 4.5. For a Conway operator fix of a Cartesian differ-
ential category, the following are equivalent:

(i) fix satisfies the differential-fixpoint rule;
(ii) fix satisfies the tangent-fixpoint rule;
(iii) fix satisfies the strong differential-fixpoint rule.

Proof. The key to this proof is Bekič’s Axiom. Before we try to

prove the equivalence of these three rules, let us first compute a use-

ful identity using the term calculus. So assuming we have a Conway

operator (and not assuming any of the three rules), consider any

map 𝑓 : 𝐴×𝑋 → 𝑋 . To simplify using Bekič’s Axiom, let 𝑧 = (𝑎, 𝑏),
and define ℎ(𝑧, 𝑥,𝑦) = 𝑓 (𝑎, 𝑥) and 𝑘 (𝑧, 𝑥,𝑦) = d𝑓 (𝑢,𝑣)

d(𝑢,𝑣) (𝑎, 𝑥) · (𝑏,𝑦).
Then using Bekič’s Axiom, we compute that:

𝜇 (𝑥,𝑦).
(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
)

= 𝜇 (𝑥,𝑦) . (ℎ(𝑧, 𝑥,𝑦), 𝑘 (𝑧, 𝑥,𝑦))
= (𝜇𝑥 .ℎ(𝑧, 𝑥, 𝜇𝑦.𝑘 (𝑧, 𝑥,𝑦)),𝜇𝑦.𝑘 (𝑧, 𝜇𝑥 .ℎ(𝑧, 𝑥, 𝜇𝑦.𝑘 (𝑧, 𝑥,𝑦)),𝑦))

=

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), 𝜇𝑦.d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)
)

So we have the equality:

𝜇 (𝑥,𝑦).
(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
)

=

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), 𝜇𝑦.d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)
) (7)

Using this identity, we can now prove the desired equivalence. We

will prove (𝑖𝑖) ⇒ (𝑖) ⇒ (𝑖𝑖𝑖) ⇒ (𝑖𝑖). Now (𝑖𝑖) ⇒ (𝑖) is just
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Lemma 3.5. For (𝑖) ⇒ (𝑖𝑖𝑖), using (7), we can easily expand out the

differential-fixpoint rule as:

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) · 𝑏

= 𝜋2

(
𝜇 (𝑥,𝑦).

(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
))

= 𝜋2

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), 𝜇𝑦.d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)
)

= 𝜇𝑦.
d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)

So the strong differential-fixpoint rule holds. For (𝑖𝑖𝑖) ⇒ (𝑖𝑖), ap-
plying the strong differential-fixpoint rule to (7) gives us that:

𝜇 (𝑥,𝑦).
(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
)

=

(
𝜇𝑥 .𝑓 (𝑎, 𝑥), 𝜇𝑦.d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦)
)

= 𝜇 (𝑥,𝑦) .
(
𝑓 (𝑎, 𝑥), d𝑓 (𝑢, 𝑣)

d(𝑢, 𝑣) (𝑎, 𝑥) · (𝑏,𝑦)
)

So the tangent-fixpoint rule holds. So we conclude that for a Con-

way operator, the three rules are equivalent. □

Therefore, for a traced Cartesian differential category, its Conway

operator satisfies the differential-fixpoint rule, the tangent-fixpoint

rule, and the strong differential-fixpoint rule. Since a Conway oper-

ator is equivalent to a trace operator, there is yet another equivalent

rule involving the trace operator. Unfortunately, there does not ap-

pear to be a nice formula for describing the derivative of the trace.

Instead, the trace operator behaves quite nicely with the tangent

bundle functor. Now for a map 𝑓 : 𝐴 × 𝑋 → 𝐵 × 𝑋 , we have that

T
(
Tr𝑋

𝐴,𝐵
(𝑓 )

)
: 𝐴×𝐴 → 𝐵×𝐵. On the other hand, first applying the

tangent functor gives T (𝑓 ) : 𝐴×𝑋 ×𝐴×𝑋 → 𝐵×𝑋 ×𝐵×𝑋 . Before

we can take its trace, we must post- and pre-compose by 𝑐 to get

𝑐◦T (𝑓 )◦𝑐 : 𝐴×𝐴×𝑋×𝑋 → 𝐵×𝐵×𝑋×𝑋 . Then taking the trace we

finally get a map of type Tr𝑋×𝑋
𝐴×𝐴,𝐵×𝐵 (𝑐 ◦ T (𝑓 ) ◦ 𝑐) : 𝐴×𝐴 → 𝐵×𝐵.

Asking that these maps be equal is equivalent to the other rules.

Proposition 4.6. ACartesian differential category with a Conway
operator is a traced Cartesian differential category if and only if for
the induced trace operator Tr and for every map 𝑓 : 𝐴 ×𝑋 → 𝐵 ×𝑋 ,
the following equality holds:

T
(
Tr𝑋𝐴,𝐵 (𝑓 )

)
= Tr𝑋×𝑋

𝐴×𝐴,𝐵×𝐵 (𝑐 ◦ T (𝑓 ) ◦ 𝑐) (8)

which means that (𝑇, 𝑐) is a traced monoidal functor ([40]) where the
monoidal product is cartesian.

Proof. For the ⇒ direction, let 𝑓 = ⟨𝑓1, 𝑓2⟩. Let us first put
𝑐 ◦ T (𝑓 ) ◦ 𝑐 into a pair so that we can take its trace. By [48, Lemma

2.9(iv)], recall that T(⟨ℎ, 𝑘⟩) = 𝑐 ◦ ⟨T(ℎ),T(𝑘)⟩. From this it is

straightforward to compute that 𝑐 ◦T (𝑓 ) ◦𝑐 = ⟨T(𝑓1) ◦ 𝑐,T(𝑓2) ◦ 𝑐⟩.

Then using the tangent-fixpoint rule, we compute that:

Tr𝑋×𝑋
𝐴×𝐴,𝐵×𝐵 (𝑐 ◦ T (𝑓 ) ◦ 𝑐)=Tr𝑋×𝑋

𝐴×𝐴,𝐵×𝐵 (⟨T(𝑓1) ◦ 𝑐,T(𝑓2) ◦ 𝑐⟩)

= T(𝑓1) ◦ 𝑐 ◦
〈
1𝐴×𝐴, fix𝑋×𝑋

𝐴×𝐴 (T(𝑓2) ◦ 𝑐)
〉

= T(𝑓1) ◦ 𝑐 ◦
〈
T(1𝐴),T

(
fix𝑋𝐴 (𝑓2)

)〉
= T(𝑓1) ◦ T

(〈
1𝐴, fix𝑋𝐴 (𝑓1)

〉)
= T

(
𝑓1 ◦

〈
1𝐴, fix𝑋𝐴 (𝑓2)

〉)
= T

(
Tr𝑋𝐴,𝐵 (⟨𝑓1, 𝑓2⟩)

)
= T

(
Tr𝑋𝐴,𝐵 (𝑓 )

)
So (8) holds as desired. For the⇐ direction, we will show that (8)

implies the tangent-fixpoint rule. So for 𝑓 : 𝐴 × 𝑋 → 𝐴, we get:

T
(
fix𝑋𝐴 (𝑓 )

)
= T

(
Tr𝑋𝐴,𝐵 (⟨𝑓 , 𝑓 ⟩)

)
= Tr𝑋×𝑋

𝐴×𝐴,𝐵×𝐵 (𝑐 ◦ T (⟨𝑓 , 𝑓 ⟩) ◦ 𝑐)

= Tr𝑋×𝑋
𝐴×𝐴,𝐵×𝐵 (⟨T (𝑓 ) ,T (𝑓 )⟩ ◦ 𝑐)

= Tr𝑋×𝑋
𝐴×𝐴,𝐵×𝐵 (⟨T (𝑓 ) ◦ 𝑐,T (𝑓 ) ◦ 𝑐⟩)

= fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐)

So the tangent-fixpoint rule holds. Then by Prop 4.5, it follows that

we have a traced Cartesian differential category. □

5 FIXPOINTS AND LINEARITY
An important notion in a Cartesian differential category is the

concept of “linearity". In particular, linear maps are those whose

derivatives are simply themselves evaluated in the second argument.

The term linear is justified since in many models, linear in the

Cartesian differential category sense corresponds to being linear in

the classical algebraic sense.

Definition 5.1. In a Cartesian differential category, a map 𝑓 :

𝐴 → 𝐵 is linear [9, Def 2.1.1] if D[𝑓 ] = 𝑓 ◦ 𝜋2, which in the term

calculus is expressed as:

d𝑓 (𝑥)
d𝑥

(𝑎) · 𝑏 = 𝑓 (𝑏)

For a Cartesian differential category C, its subcategory of linear

maps will be denoted as LIN[C].

Properties of linear maps can be found in [16, Lemma 2.6], such

as the fact that they are closed under composition, sum, and product

structure. In particular, every linear map is also additive [16, Lemma

2.6.(i)]. From this, it follows that LIN[C] has finite biproducts [9,
Cor 2.2.3]. It is important to note that although linear maps and

additive maps often coincide, in an arbitrary Cartesian differential

category not every additive map is necessarily linear.

We now consider how linearity interacts with parametrized fix-

point operators. The first natural thing to ask is that the linear

maps be the strict maps. Indeed, an important concept for fixpoint

operators is the notion of uniformity, which is used to characterize

fixpoint operators uniquely without relying on order-theoretic ar-

guments. The uniformity axiom is then relative to a subcategory of

strict maps.

Definition 5.2. In a categoryCwith finite products and a parametrized

fixpoint operator, a map ℎ : 𝑋 → 𝑌 is strict [38, Def 4.4] if for
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every 𝑓 : 𝐴 ×𝑋 → 𝑋 and 𝑔 : 𝐴 × 𝑌 → 𝑌 , if the equality on the left

holds then the equality on the right holds:

ℎ ◦ 𝑓 = 𝑔 ◦ (1𝐴 × ℎ) ⇒ ℎ ◦ fix𝑋𝐴 (𝑓 ) = fix𝑌𝐴 (𝑔).
which in the term calculus is expressed as:

ℎ (𝑓 (𝑎, 𝑥)) = 𝑔(𝑎, ℎ(𝑥)) ⇒ ℎ (𝜇𝑥 .𝑓 (𝑎, 𝑥)) = 𝜇𝑦.𝑔(𝑎,𝑦)

Definition 5.3. LetC and S be categories with finite products, and

J : S → C be a bijection-on-objects and strict product preserving

functor. Then a parametrized fixpoint operator on C is J-uniform
[59, Def 2.8] if for every map ℎ in S, J(ℎ) is strict in C.

So S is understood as a suitable subcategory of strict maps of C.
For categories of domain-like structures, the strict maps are usually

the ones which preserve bottom elements. In categorical models of

Linear Logic with fixpoints, the strict maps of interests are the maps

of the base monoidal category. For Cartesian differential categories,

it is natural to ask that the linear maps be strict. This can also be

expressed in terms of the uniformity axiom by considering the

canonical inclusion functor J : LIN[C] → C. Therefore, we may

ask that the parametrized fixpoint operator be J-uniform, which we

call being linearly uniform. Explicitly:

Definition 5.4. A parametrized fixpoint operator on a Cartesian

differential category is linearly uniform if every linear map is

strict.

In Sec 7.5, we will use the uniform axiom to make use of a

theorem by Plotkin and Simpson [59] so that we can prove the nec-

essary compatibility results between differential combinators and

parametrized fixpoint operator in coKleisli categories of comonads

satisfying some conditions on bifree algebras.

Linearity also behaves quite nicely with Conway operators. An

important first observation is that for a Conway operator, the

parametrized fixpoint of a linear map is again linear.

Lemma 5.5. In a traced Cartesian differential category, if a map
𝑓 : 𝐴 × 𝑋 → 𝑋 is linear, then fix𝑋

𝐴
(𝑓 ) : 𝐴 → 𝑋 is also linear.

Proof. We prove this using the term calculus. Using the strong

differential-fixpoint rule and the fact that 𝑓 is linear, we compute:

d𝜇𝑥 .𝑓 (𝑢, 𝑥)
d𝑢

(𝑎) ·𝑏=𝜇𝑦.d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎, 𝑥)) · (𝑏,𝑦) = 𝜇𝑦.𝑓 (𝑏,𝑦)

So we conclude that fix𝑋
𝐴
(𝑓 ) is also linear. □

Therefore, if C is a traced Cartesian differential category with

Conway operator fix, then fix is also a Conway operator on LIN[C].
This in turn means that LIN[C] also inherits the trace operator.

However, for a category with biproducts, to give a trace operator is

equivalent to giving a repetition operator [58, Prop 6.11]. So for a

traced Cartesian differential category, its Conway operator induces

a repetition operator on its subcategory of linear maps.

Definition 5.6. For a category C with finite biproducts, a repeti-
tion operator [58, Prop 6.11] is a family of functions (−)∗ indexed
by objects in C,

(−)∗𝑋 : C(𝑋,𝑋 ) → C(𝑋,𝑋 )
𝑓 : 𝑋 → 𝑋

𝑓 ∗ : 𝑋 → 𝑋

such that the following equalities hold:

1. Fixpoint: 𝑓 ∗ = 1𝑋 + 𝑓 ◦ 𝑓 ∗

2. Addition: (𝑓 + 𝑔)∗ = (𝑓 ∗ ◦ 𝑔)∗ ◦ 𝑓 ∗

3. Dinaturality: (𝑓 ◦ 𝑔)∗ ◦ 𝑓 = 𝑓 ◦ (𝑔 ◦ 𝑓 )∗

Corollary 5.7. For a traced Cartesian differential category C,
LIN[C] has a repetition operator defined as 𝑓 ∗ = fix𝑋

𝑋
(𝜋1 + 𝑓 ◦ 𝜋2),

which in the term calculus is expressed as follows:

𝑓 ∗ (𝑎) = 𝜇𝑥 . (𝑎 + 𝑓 (𝑥)) . (9)

On the other hand, we can also consider linearity in a certain

argument. For the story of this paper, we are particularly interested

in maps which are linear in their second argument.

Definition 5.8. In a Cartesian differential category, a map 𝑓 :

𝐴 × 𝑋 → 𝐵 is linear in its second argument [16, Def 4.5] (or
simply linear in 𝑋 when there is no confusion) if

D[𝑓 ] ◦ ⟨𝑥,𝑦, 0, 𝑧⟩ = 𝑓 ◦ ⟨𝑥, 𝑧⟩
which in the term calculus is expressed as:

d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝑥) · (0, 𝑦) = 𝑓 (𝑎,𝑦) .

In particular, [CD.6] is precisely the statement that for any map

𝑓 : 𝐴 → 𝐵, its derivative D[𝑓 ] : 𝐴 ×𝐴 → 𝐵 is linear in its second

argument 𝐴. Similarly, for a map 𝑓 : 𝐴1 × . . . ×𝐴𝑛 → 𝐵, we can

also define what it means to be linear in its 𝑗-th argument 𝐴 𝑗 [34,

Def 2.6]. Now, taking the parametrized fixpoint in a linear argument

results in zero. This makes sense since a map 𝑓 : 𝐴×𝑋 → 𝑋 which

is linear in𝑋 is also additive in𝑋 . In particular, 𝑓 (𝑎, 0) = 0. Thus 0 is

a parametrized fixpoint. It is important to note that 𝑓 : 𝐴 ×𝑋 → 𝑋

being linear in 𝑋 is quite different from 𝑓 being linear. Thus the

following lemma does not clash with the previous one.

Lemma 5.9. In a traced Cartesian differential category, if a map
𝑓 : 𝐴 × 𝑋 → 𝑋 is linear in 𝑋 then fix𝑋

𝐴
(𝑓 ) = 0.

Proof. We use the term calculus again. The key axiom here is

[CD.2], which recall says that evaluating a derivative at zero in its

second argument is zero. Therefore, using the strong differential-

fixpoint rule, we compute that 𝜇𝑦.𝑓 (𝑎) · 𝑦 is equal to

𝜇𝑦.
d𝑓 (𝑢, 𝑣)
d(𝑢, 𝑣) (𝑎, 𝜇𝑥 .𝑓 (𝑎) · 𝑥) · (0, 𝑦) = d𝜇𝑥 .𝑓 (𝑢, 𝑥)

d𝑢
(𝑎) · 0 = 0 □

6 CLOSED SETTING
Let us now consider the case when the underlying category is

Cartesian closed. This is an important case since Cartesian closed
differential categories (also sometimes called differential 𝜆 cat-

egories) provide the categorical semantics of the differential 𝜆-

calculus. For a more in-depth introduction to Cartesian closed dif-

ferential categories and the differential 𝜆-calculus, we refer the

reader to [11, 12, 16, 22, 52].

For a Cartesian closed category, we denote the internal hom by

𝐴 ⇒ 𝐵, the evaluation map by eval𝐴,𝐵 : (𝐴 ⇒ 𝐵) ×𝐴 → 𝐵, and for

a map 𝑓 : 𝐶×𝐴 → 𝐵, we denote its currying by 𝜆(𝑓 ) : 𝐶 → 𝐴 ⇒ 𝐵,

which recall is the unique map such that eval𝐴,𝐶 ◦ (𝜆(𝑓 ) × 1𝐴) = 𝑓 .

As explained in [12, Lemma 4.10], there are two equivalent ways

of expressing compatibility between the closed structure and the

differential combinator: one in terms of the Curry operator and one
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in terms of the evaluation map. In terms of the latter, a Cartesian
closed differential category [12, Sec 4.6] is a Cartesian differential
category which is Cartesian closed such that every evaluation map

is linear in their internal hom argument (which by our convention

means they are linear in their first argument). Another equivalent

way of axiomatizing Cartesian closed differential categories is via

an axiom which says that the derivative of a curry is the curry of

the partial derivative [16, Def 6.2]. Every model of the differential

𝜆-calculus induces a Cartesian closed differential category [12, Thm

4.3], and conversely, every Cartesian closed differential category

induces a model of the differential 𝜆-calculus [11, Thm 4.12].

On the other hand, in a Cartesian closed category with a parame-

trized fixpoint operator fix, for every object 𝑋 , define the map

Y𝑋 : 𝑋 ⇒ 𝑋 → 𝑋 as the parametrized fixpoint of the evaluation

map eval𝑋,𝑋 : (𝑋 ⇒ 𝑋 ) × 𝑋 → 𝑋 , that is,

Y𝑋 := fix𝑋𝑋⇒𝑋 (eval𝑋,𝑋 ).
Moreover, for every 𝑓 : 𝐴 × 𝑋 → 𝑋 , its parametrized fixpoint can

be expressed in terms of Y𝑋 as:

fix𝑋𝐴 (𝑓 ) = Y𝑋 ◦ 𝜆(𝑓 ) . (10)

From this identity, we can express the differential-fixpoint rule and

the others in terms of Y. In particular, we highlight that (12) is

the analogue of the equation Ehrhard computes in the coKleisli

category of a coherent differential category which is Scott [22, Thm

5.29].

Proposition 6.1. In a Cartesian closed differential category with
a parametrized fixpoint fix,
(i) fix satisfies the differential-fixpoint rule if and only if the fol-

lowing equality holds:

D [Y𝑋 ] = 𝜋2 ◦ Y𝑋×𝑋 ◦ 𝜆
(
T(eval𝑋,𝑋 ) ◦ 𝑐

)
(11)

(ii) fix satisfies the tangent-fixpoint rule if and only if the following
equality holds:

T(Y𝑋 ) = Y𝑋×𝑋 ◦ 𝜆
(
T(eval𝑋,𝑋 ) ◦ 𝑐

)
(12)

(iii) fix satisfies the strong differential-fixpoint rule if and only if the
following equality holds:

D[Y𝑋 ]= fix𝑋 ◦𝜆 (D[eval] ◦ ⟨𝜋1,Y𝑋 ◦ 𝜋1, 𝜋2, 𝜋3⟩) (13)

Proof. Let us prove (i). For the ⇒ direction, by setting 𝑓 =

eval𝑋,𝑋 in (4), and then using (10), we get that:

D [Y𝑋 ] = D
[
fix𝑋𝑋⇒𝑋

(
eval𝑋,𝑋

) ]
= 𝜋2 ◦ fix𝑋×𝑋

(𝑋⇒𝑋 )×(𝑋⇒𝑋 )
(
T(eval𝑋,𝑋 ) ◦ 𝑐

)
= 𝜋2 ◦ Y𝑋×𝑋 ◦ 𝜆

(
T(eval𝑋,𝑋 ) ◦ 𝑐

)
For the ⇐ direction, first recall that 𝜆(𝑔) ◦ ℎ = 𝜆 (𝑔 ◦ (ℎ × 1)).
We also have that 𝑐 ◦ (T(𝑓 ) × T(𝑔)) = T(𝑓 × 𝑔) ◦ 𝑐 [48, Lemma

2.9(v)]. From these identities it follows that 𝜆 (T(𝑓 ) ◦ 𝑐) ◦ T(𝑔) =
𝜆 (T (𝑓 ◦ (𝑔 × 1)) ◦ 𝑐). Using this and (10), we compute that:

D
[
fix𝑋𝐴 (𝑓 )

]
= D [Y𝑋 ◦ 𝜆(𝑓 )] = D [Y𝑋 ] ◦ T (𝜆(𝑓 ))

= 𝜋2 ◦ Y𝑋×𝑋 ◦ 𝜆
(
T(eval𝑋,𝑋 ) ◦ 𝑐

)
◦ T (𝜆(𝑓 ))

= 𝜋2 ◦ Y𝑋×𝑋 ◦ 𝜆
(
T

(
eval𝑋,𝑋 ◦ (𝜆(𝑓 ) × 1)

)
◦ 𝑐

)
= 𝜋2 ◦ Y𝑋×𝑋 ◦ 𝜆 (T (𝑓 ) ◦ 𝑐) = 𝜋2 ◦ fix𝑋×𝑋

𝐴×𝐴 (T(𝑓 ) ◦ 𝑐)

So the differential-fixpoint rule holds as desired. One can prove (ii)

and (iii) using similar computations. □

7 EXAMPLES
7.1 Categories with finite biproducts
Any categoryCwith finite biproducts is a Cartesian differential cate-

gory where the differential combinator is given by pre-composition

with the second projection: D[𝑓 ] = 𝑓 ◦ 𝜋2 [16, Ex 2.10]. If C comes

equipped with a parametrized fixpoint operator such that the pro-

jection maps are strict (Def 5.2), then the differential-fixpoint rule

holds, and so C is a Cartesian differential fixpoint category. On the

other hand, any Conway operator on C can easily be seen to satisfy

the strong differential-fixpoint rule. Therefore, any category with

finite biproducts which is equipped with a Conway operator (or

equivalently a trace operator or a repetition operator) is a traced

Cartesian differential category.

7.2 Categories of (weighted) relations
The category Rel whose objects are sets and morphisms are binary

relations between them is one of the most basic models of linear

logic, with many other models arising as refinements of it. The

operation mapping a set 𝐴 to the set of finite multisets over 𝐴,

!𝐴 := {𝑚 : 𝐴 → N | 𝑚 has finite support}

can be equipped with a comonad structure on Rel. The induced
co-Kleisli category Rel! is a Cartesian differential category [11, Sec

5.1] and also has a canonical Conway operator [36, Prop 3].

Binary relations over sets can be generalized to weighted rela-

tions over a continuous semi-ring [45]. A continuous semi-ring is a

semi-ring (S, ≤, 0, +, 1, ·) which is also cpo, whose zero element 0 is
the bottom, and both the addition andmultiplication are continuous.

For a continuous semi-ring S, the category RelS has objects sets

and maps from 𝐴 to 𝐵 are functions 𝑅 : 𝐴 × 𝐵 → S. The composite

of 𝑅 : 𝐴×𝐵 → S and 𝑆 : 𝐵×𝐶 → S is the function 𝑆 ◦𝑅 : 𝐴×𝐶 → S
given by

(𝑆 ◦ 𝑅) (𝑎, 𝑐) =
∑︁
𝑏∈𝐵

𝑅(𝑎, 𝑏) · 𝑆 (𝑏, 𝑐)

where the sum on the right is well defined by the cpo structure of

S. The finite multiset construction also induces a comonad on RelS

and the corresponding co-Kleisli category is a Cartesian differential

category. The derivative of a weighted relation 𝑅 : !𝐴 × 𝐵 → S is

D[𝑅] : !𝐴 × !𝐴 × 𝐵 → S:

(𝑚,𝑛,𝑏) ↦→
{
𝑅(𝑚 + 𝑛,𝑏) if 𝑛 = [𝑎] for some 𝑎 ∈ 𝐴

0 otherwise

The co-Kleisli category RelS
!
also has a Conway operator obtained

via Kleene iteration. For a weighted relation 𝑅 : !𝐴 × !𝑋 × 𝑋 → S,
its least fixpoint is fix𝑅 : !𝐴 × 𝑋 → S inductively defined as

fix𝑅 :=
∨

𝑛∈N fix𝑛 𝑅, where for𝑚 ∈ !𝐴, we define

fix0 𝑅(𝑚) = 0 fix𝑛+1 𝑅(𝑚) = 𝑅(𝑚, fix𝑛 𝑅(𝑚))

with composition in this expression being taken in the co-Kleisli

category. The fixpoint operator defined above satisfies the univer-

sal property of being the unique parametrized fixpoint operator
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that is uniform with respect to linear morphisms, which here cor-

respond precisely to the morphisms of RelS. This uniform Con-

way operator and the differential combinator verify the (strong)

differential-fixpoint rule, and therefore RelS
!
is a traced Cartesian

closed differential category, a moreover the Conway operator is

linearly uniform. That this is true is because this example is an

instance of a more general statement concerning fixpoint operators

obtained via bifree algebras of comonads [59] – which we discuss

in Sec 7.5 below. When taking the Boolean semi-ring B = {t, f}, we
get back the relational model, RelB

!
= Rel!.

7.3 Formal Power Series
For a continuous semi-ring S, we may consider the full subcate-

gory of RelS
!
whose objects are the finite sets. This subcategory

of finite sets is again a traced Cartesian differential category and

is equivalent to the Lawvere theory of formal power series over

S. So we obtain a traced Cartesian differential category of formal

power series over any continuous semi-ring. Even though this is

a subcategory of the previous example, since formal power series

over continuous semi-rings are used in many areas of computer

science, it is worthwhile to spell out some details.

So for a continuous semi-ring S, let PWS
be the category whose

objects are the natural numbers 𝑛 ∈ N and where a map 𝑝 : 𝑛 →𝑚

is an𝑚-tuple of power series in 𝑛-variables:

𝑝 = (𝑝1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑝𝑚 (𝑥1, . . . , 𝑥𝑛)) .
Since coefficients are over a continuous semi-ring, the composition

of power series is well-defined. Now for 𝑛 ∈ N, define the set 𝑛 as

{1, . . . , 𝑛}. Then the full subcategory RelS
!
with objects restricted to

finite sets of the form 𝑛 is isomorphic to PWS
. Indeed, a weighted

relation 𝑅 : !𝑛 ×𝑚 → S in RelS
!
corresponds to the tuple of power

series 𝑝 = (𝑝1 ( ®𝑥), . . . , 𝑝𝑚 ( ®𝑥)) where for 1 ≤ 𝑗 ≤ 𝑚:

𝑝 𝑗 (𝑥1, . . . , 𝑥𝑛) =
∑︁

(𝑘1,...,𝑘𝑛 ) ∈S𝑛
𝑅(𝑘1, . . . , 𝑘𝑛, 𝑗) · 𝑥𝑘1

1
. . . 𝑥

𝑘𝑛
𝑛

Therefore, it follows that PWS
is a traced Cartesian differential

category. In particular, the least fixpoint in the weighted relational

model corresponds to the least fixpoint for power series over contin-

uous semi-rings first described in [57]. On the other hand, for a map

𝑝 : 𝑛 → 1, which is just a power series in 𝑛 variables 𝑝 (𝑥1, . . . , 𝑥𝑛),
applying the differential combinator to it results in the sum of its

partial derivatives:

D[𝑝] ( ®𝑥, ®𝑎) =
𝑛∑︁
𝑖=1

𝜕𝑝 ( ®𝑥)
𝜕𝑥𝑖

· 𝑎𝑖

This corresponds to the notation D 𝑝 | ®𝑥 ( ®𝑎) in papers such as [27].

By [CD.4], for a tuple 𝑝 = (𝑝1 ( ®𝑥), . . . , 𝑝𝑚 ( ®𝑥)), its derivative is

D[𝑝] = (D[𝑝1] ( ®𝑥, ®𝑎), . . . ,D[𝑝𝑚] ( ®𝑥, ®𝑎)).

7.4 Quantale-enriched profunctors
Another possible generalization of the notion of relations is given

by the notion of quantale enriched profunctors [41, 63]. A quantale
Q is a complete lattice that is symmetric monoidal closed such

that the tensor distributes over arbitrary suprema. Quantales are

idempotent semi-rings with join ∨ as additive structure and tensor

⊗ as multiplicative structure. Instead of having sets as objects,

we can consider richer structures given by the notion of quantale

enriched categories: for a quantale Q, a Q-category A consists of a

set of objects Ob(A) and for all objects 𝑎, 𝑏 an object A(𝑎, 𝑏) in Q
together with composition A(𝑎, 𝑏) ⊗ A(𝑏, 𝑐) ≤ A(𝑎, 𝑐) and identity

inequalities 1 ≤ A(𝑎, 𝑎) in Q. For example, a Q-category for the

Lawvere quantaleR+∪{∞} corresponds to the notion of generalized
metric space [46].

For Q-categories A,B, a Q-profunctor 𝑅 : A −↦−→ B (also called

distributors or bimodules) from A to B is a function 𝑅 : Ob(A) ×
Ob(B) → Q with biaction inequalities for all 𝑎, 𝑎′ ∈ Ob(A), 𝑏, 𝑏′ ∈
Ob(B): A(𝑎, 𝑎′) ⊗ 𝑅(𝑎, 𝑏) ⊗ B(𝑏′, 𝑏) ≤ 𝑅(𝑎′, 𝑏′). There is an analo-

gous free exponential construction mapping a Q-category A to the

Q-category !A whose set of objects is the set of finite sequences

®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ of objects of A and for ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ and

®𝑏 = ⟨𝑏1, . . . , 𝑏𝑚⟩, the hom-object is given by

!A( ®𝑎, ®𝑏) =


∨
𝜎 :𝑛�𝑛

⊗
1≤𝑖≤𝑛

A(𝑎𝑖 , 𝑏𝜎𝑖 ) if 𝑛 =𝑚

⊥ otherwise

The induced co-Kleisli category has a differential combinator, where

the derivative of a Q-profunctor 𝑅 : !A −↦−→ B generalizes the one in

the discrete case for weighted relations:

(⟨𝑎1, . . . , 𝑎𝑛⟩,⟨𝑎′1, . . . , 𝑎
′
𝑚⟩, 𝑏) ↦→

{
𝑅(⟨𝑎1, . . . , 𝑎𝑛, 𝑎′

1
⟩, 𝑏) if𝑚 = 1

⊥ otherwise

The induced co-Kleisli category also has a fixpoint operator map-

ping a Q-profunctor 𝑅 : !A ⊗ !X −↦−→ X to fix𝑅 : !A −↦−→ X obtained

by Kleene iteration as ∨𝑛∈N fix𝑛 𝑅 with fix0 𝑅 = ⊥ and

fix𝑛+1 𝑅( ®𝑎, 𝑥) =
∨

®𝑦=⟨𝑦1,...,𝑦𝑛 ⟩∈!X
®𝑎0,...,®𝑎𝑛∈!A

𝑅( ®𝑎0, ®𝑦, 𝑥) ⊗
⊗
1≤𝑖≤𝑛

fix𝑛 𝑅( ®𝑎𝑖 , 𝑦𝑖 )

So we get a Cartesian differential fixpoint category, which is again

an instance of the bifree algebras story in the next section.

7.5 Fixpoints from bifree algebras
Recall that for an endofunctor 𝐹 : C → C, a bifree 𝐹 -algebra [59, Sec
5] is an initial 𝐹 -algebra (𝐴, 𝑓 : 𝐹𝐴 → 𝐴) such that the inverse of 𝑓

is a final 𝐹 -coalgebra (𝐴, 𝑓 −1 : 𝐴 → 𝐹𝐴). A result by Simpson and

Plotkin allows one to construct a parametrized fixpoint operator in

the co-Kleisli category of a comonad whose underlying endofunctor

has suitable bifree algebras [59]. We proceed to show that if the

co-Kleisli category is also a Cartesian differential category, then it

is also a Cartesian differential fixpoint category.

Theorem 7.1. [59, Prop 6.5 & Thm 3] Let C be a category with
finite products equipped with a comonad (𝐹, 𝛿, 𝜀). Let J : C → C𝐹 be
the free functor induced by the comonadic adjunction.

(1) If for all objects 𝐴 in C, the endofunctors 𝐹 (𝐴 × −) have a
bifree algebra, then C𝐹 has a unique uniform (with respect to
J) parametrized fixpoint operator.

(2) If for all objects 𝐴 in C, the endofunctors 𝐹 (𝐴 × 𝐹 (𝐴 × −))
and 𝐹 (𝐴×−×−) have a bifree algebra, then C𝐹 has a unique
uniform (with respect to J) Conway fixpoint operator.

We give a sketch of how the parametrized fixpoint operator is

constructed via bifree algebras. Assume that for all 𝐴 in C, the
endofunctor 𝐹 (𝐴 × −) has a bifree algebra𝑤𝐴 : 𝐹 (𝐴 × Φ𝐴) → Φ𝐴
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which we can view as a map𝐴×Φ𝐴 → Φ𝐴 in the co-Kleisli category

C𝐹 . As explained in [59, Sec 6], for all 𝐴 in C, there exists a unique
map 𝑡𝐴 : 𝐴 → Φ𝐴 in C𝐹 such that (1𝐴 × 𝑡𝐴) ◦ Δ𝐴 = 𝑤−1

𝐴
◦ 𝑡𝐴 .

Moreover, for all 𝑓 : 𝐴 × 𝑋 → 𝑋 in C𝐹 , there exists a unique map

𝑢𝑓 : Φ𝐴 → 𝑋 in C such that J(𝑢𝑓 ) ◦𝑤𝐴 = 𝑓 ◦ J(1𝐴 ×𝑢𝑓 ). Then ,for

a map 𝑓 : 𝐴 ×𝑋 → 𝑋 in C𝐹 , its parametrized fixpoint is defined as

the following composite:

fix𝑋𝐴 (𝑓 ) := 𝐴
𝑡𝐴−−→ Φ𝐴

J(𝑢𝑓 )
−−−−−→ 𝑋 .

Now suppose that C𝐹 is also a Cartesian differential category, such

that for all maps 𝑓 in C, J(𝑓 ) is linear in C𝐹 . We will now show

that the parametrized fixpoint operator defined above satisfies the

tangent-fixpoint rule.

To do so, the key to this proof is that if 𝑘 is linear then T(𝑘) =
𝑘 × 𝑘 [48, Lemma 2.(iii)]. In particular, for all 𝑔 in C, we have

that T(J(𝑔)) = J(𝑔) × J(𝑔). Now, to help with notation, define 𝑒 :

Φ𝐴×𝐴 → Φ𝐴 × Φ𝐴 as 𝑒 := 𝑢T(𝑤𝐴 )◦𝑐 , that is, the unique map such

that J(𝑒) ◦𝑤𝐴×𝐴 = T(𝑤𝐴) ◦ 𝑐 ◦ (1𝐴×𝐴 × J(𝑒)). Then we compute

that (note J also preserves products strictly):

T(𝑓 ) ◦ 𝑐 ◦
(
1𝐴×𝐴 × J

(
(𝑢𝑓 × 𝑢𝑓 ) ◦ 𝑒

))
T(𝑓 ) ◦ 𝑐 ◦

(
1𝐴 × 1𝐴 × J(𝑢𝑓 ) × J(𝑢𝑓 )

)
◦ (1𝐴×𝐴 × J(𝑒))

= T(𝑓 ) ◦
(
1𝐴 × J(𝑢𝑓 ) × 1𝐴 × J(𝑢𝑓 )

)
◦ 𝑐 ◦ (1𝐴×𝐴 × J(𝑒))

= T(𝑓 ) ◦
(
J(1𝐴 × 𝑢𝑓 ) × J(1𝐴 × 𝑢𝑓 )

)
◦ 𝑐 ◦ (1𝐴×𝐴 × J(𝑒))

= T(𝑓 ) ◦ T
(
J(1𝐴 × 𝑢𝑓 )

)
◦ 𝑐 ◦ (1𝐴×𝐴 × J(𝑒))

= T(J(𝑢𝑓 )) ◦ T (𝑤𝐴) ◦ 𝑐 ◦ (1𝐴×𝐴 × J(𝑒))

=

(
J(𝑢𝑓 ) × J(𝑢𝑓 )

)
◦ J(𝑒) ◦𝑤𝐴×𝐴 = J

(
(𝑢𝑓 × 𝑢𝑓 ) ◦ 𝑒

)
◦𝑤𝐴×𝐴

By uniqueness, it folllows that𝑢T(𝑓 )◦𝑐 = (𝑢𝑓 ×𝑢𝑓 ) ◦𝑒 . Dually, since
𝑤𝐴×𝐴 is a final coalgebra, there is a unique map 𝑝 : Φ𝐴 × Φ𝐴 →
Φ𝐴×𝐴 such that J(𝑝)◦T(𝑡𝐴) = 𝑡𝐴×𝐴 , and also that J(𝑝)◦T(𝑤𝐴)◦𝑐 =
𝑤𝐴×𝐴 ◦ (1𝐴×𝐴 × J(𝑝)), which by uniqueness implies that 𝑒 ◦ 𝑝 =

1Φ𝐴×Φ𝐴
. Using these identities, we can finally compute that:

fix𝑋×𝑋
𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) = J(𝑢T(𝑓 )◦𝑐 ) ◦ 𝑡𝐴×𝐴

= J

(
(𝑢𝑓 × 𝑢𝑓 ) ◦ 𝑒

)
◦ J(𝑝) ◦ T(𝑡𝐴)

= (J(𝑢𝑓 ) × J(𝑢𝑓 )) ◦ J(𝑒) ◦ J(𝑝) ◦ T(𝑡𝐴)
= (J(𝑢𝑓 ) × J(𝑢𝑓 )) ◦ T(𝑡𝐴) = T(J(𝑢𝑓 )) ◦ T(𝑡𝐴)

= T
(
J(𝑢𝑓 ) ◦ 𝑡𝐴

)
= T

(
fix𝑋𝐴 (𝑓 )

)
So we conclude that the tangent-fixpoint rule holds and that there-

fore C𝐹 is a Cartesian differential fixpoint category. This construc-

tion subsumes both the example of weighted relations (Sec 7.2) and

the example of quantale profunctors (Sec 7.4) since the free expo-

nential comonad in both examples has the required bifree algebras

obtained via enrichment arguments. Both categories of weighted

relations and Q-profunctors are cpo-algebraically compact [30–

32, 60]: it means that every endofunctor that is cpo-enriched has a

bifree algebra and one can verify that the endofunctor of the free

exponential comonad in both cases is a cpo-enriched functor. For

the weighted relational model, Laird computes these bifree algebras

explicitly using nested finite multisets in [44].

7.6 Fixpoint operators from fixpoint objects
A standard construction to obtain fixpoint operators in a Cartesian

closed category is via cpo-enrichment. A category C is 𝜔-cpo en-

riched if each hom-set C is an 𝜔-cpo and composition C(𝐴, 𝐵) ×
C(𝐵,𝐶) → C(𝐴,𝐶) is Scott-continuous. If in addition, the eval-

uation and pairing are monotonous, each hom-set C(𝐴, 𝐵) has a
bottom element 0 and for all 𝑓 , we have 0◦𝑓 = 0 and eval◦⟨0, 𝑓 ⟩ = 0,

it was shown by Berry [5] that the category has a least parametrized

fixpoint operator. For each 𝑋 , we can construct a fixpoint combi-

nator morphism Y𝑋 : 𝑋 ⇒ 𝑋 → 𝑋 as the supremum Y𝑋 = ∨𝑛Y𝑛
𝑋

where Y0

𝑋
= 0 and Y𝑛+1

𝑋
= eval𝑋,𝑋 ◦ ⟨1𝑋⇒𝑋 ,Y𝑛

𝑋
⟩. Explicitly, the

parametrized fixpoint operator is defined as in (10). Now, if C is a

Cartesian differential category and the cpo bottom elements 0 coin-

cide with the zero of the additive structure, then we can show that

this parametrized fixpoint operator satisfies the tangent-fixpoint

rule, or equivalently Y𝑋 satisfies (12). We omit the proof as it fol-

lows the same reasoning as done by Ehrhard in [22, Thm 5.29]

in coherent differential categories with a Scott fixpoint [21]. The

knownmodels of (coherent) PCF typically have reflexive objects (re-

tractions (𝑋 ⇒ 𝑋 ) ⊳𝑋 ) which provide models of untyped 𝜆-calculs

and are particular cases of fixpoint objects. We prove below that

the tangent fixpoint axiom holds for Cartesian closed categories

where fixpoint objects induce a fixpoint operator by Lawvere’s

theorem [47].

Theorem 7.2. [47, Sec 1] In a Cartesian closed category C, if there
is a morphism 𝑟 : 𝑋 → 𝑋 ⇒ 𝑋 such that for every morphism
𝑞 : 𝐴 → 𝑋 ⇒ 𝑋 , there exists a morphism 𝑢 : 𝐴 → 𝑋 such that 𝑞 can
be factored as 𝑞 = 𝑟 ◦ 𝑢, then every morphism 𝑓 : 𝐴 × 𝑋 → 𝑋 has a
parametrized fixpoint fix𝑋

𝐴
(𝑓 ) : 𝐴 → 𝑋 .

The construction works as follows: for 𝑓 : 𝐴 × 𝑋 → 𝑋 , we first

define the map 𝑝 := 𝑓 ◦ (1𝐴 × eval) ◦ (1𝐴 × 𝑟 × 1𝑋 ) ◦ (1𝐴 × Δ𝑋 ) :
𝐴 ×𝑋 → 𝑋 , where Δ𝑋 : 𝑋 → 𝑋 ×𝑋 is the canonical diagonal map

Δ𝑋 : = ⟨1𝑋 , 1𝑋 ⟩.
Now let 𝑢 : 𝐴 → 𝑋 be a map factoring 𝜆(𝑝) : 𝐴 → 𝑋 ⇒ 𝑋 as

𝜆(𝑝) = 𝑟 ◦ 𝑢. Then the parametrized fixpoint is defined as follows:

fix𝑋𝐴 (𝑓 ) = 𝐴
𝑢−→ 𝑋

Δ𝑋−−−→ 𝑋 × 𝑋
𝑟×1𝑋−−−−−→ 𝑋 ⇒ 𝑋 × 𝑋

eval𝑋,𝑋−−−−−−→ 𝑋

To prove the differential-fixpoint rule, we need to impose slightly

stronger conditions. So we assume that for every object 𝑋 , there is

a map 𝑟𝑋 : 𝑋 → 𝑋 ⇒ 𝑋 such that for every map 𝑞 : 𝐴 → 𝑋 ⇒ 𝑋 ,

there is a unique morphism 𝑢 : 𝐴 → 𝑋 such that 𝑞 = 𝑟𝑋 ◦ 𝑢. This
stronger assumption holds automatically for the retraction case

with reflexive objects. We also need the choice of fixpoint objects

to be compatible with the differential structure, so we assume that

for all 𝑋 ,

𝑟T(𝑋 ) = (𝜋1 ⇒ 1T(𝑋 ) ) ◦ T(𝑟𝑋 ) .

Moreover, since 𝜋1◦⟨1𝑋 , 0⟩ = 1𝑋 , we have that T(𝑟𝑋 ) = (⟨1𝑋 , 0⟩ ⇒
1T(𝑋 ) ) ◦ 𝑟T(𝑋 ) .

Now for a map 𝑓 : 𝐴 × 𝑋 → 𝑋 , define 𝑠 : T(𝐴) × T(𝑋 ) → T(𝑋 )
as the following composite:

𝑠 :=𝑇 𝑓 ◦ 𝑐 ◦ (1T(𝐴) × evalT(𝑋 ),T(𝑋 ) )◦
(1T(𝐴) × 𝑟T(𝑋 ) × 1T(𝑋 ) ) ◦ (1T(𝐴) × ΔT(𝑋 ) )
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Now let𝑤 : 𝑇𝐴 → 𝑇𝑋 be the uniquemap such that 𝑟T(𝑋 )◦𝑤 = 𝜆(𝑠).
The parametrized fixpoint fix𝑋×𝑋

𝐴×𝐴 (T(𝑓 ) ◦ 𝑐) is worked out to be:

fix𝑋𝐴 (T(𝑓 ) ◦ 𝑐) =evalT(𝑋 ),T(𝑋 ) ◦
(
𝑟T(𝑋 ) × 1T(𝑋 )

)
◦ ΔT(𝑋 ) ◦𝑤

On the other hand, to work out T(fix𝑋
𝐴
(𝑓 )), we use some identi-

ties that hold in a Cartesian closed tangent category [33, Sec 5.2], so

in particular hold in a Cartesian closed differential category. So we

first have thatT(eval𝑋,𝑌 ) = evalT(𝑋 ),T(𝑌 )◦(
(
(𝜋1 ⇒ 1T(𝑌 ) ) × 1T(𝑋 )

)
,

which allows us to first compute that 𝑇 (𝑞) ◦ 𝑐 is equal to
T

(
𝑓 ◦ (1𝐴 × eval𝑋,𝑋 ) ◦ (1𝐴 × 𝑟𝑋 × 1𝑋 ) ◦ (1𝐴 × Δ𝑋 ) ◦ 𝑐

)
= T(𝑓 ) ◦ 𝑐 ◦ (1T(𝐴) × evalT(𝑋 ),T(𝑋 ) )◦
(1T(𝐴) × 𝑟T(𝑋 ) × 1T(𝑋 ) ) ◦ (1T(𝐴) × ΔT(𝑋 ) ) = 𝑠

Therefore,𝑤 is the uniquemorphism such that 𝑟𝑇𝑋 ◦𝑤 = 𝜆(𝑇 (𝑞)◦𝑐).
Moreover, for a map 𝑔 : 𝐴 × 𝐵 → 𝐶 , we have that T(𝜆(𝑔)) =

(⟨1𝐵, 0⟩ ⇒ 1T(𝐶 ) ) ◦ 𝜆 (T(𝑔) ◦ 𝑐). So we then compute that:

T(𝑟𝑋 ) ◦𝑤 = (𝜋1 ⇒ 1T(𝑋 ) ) ◦ 𝑟T(𝑋 ) ◦𝑤 = T(𝜆(𝑞))
By uniqueness, it then follows that T(𝑢) = 𝑤 . Lastly, note that

T(Δ𝑋 ) = 𝑐◦ΔT(𝑋 ) andwe also have that ((𝜋1 ⇒ 1T(𝑋 )×1T(𝑋 ) )◦𝑐◦(
(⟨1𝑋 , 0⟩ ⇒ 1T(𝑋 ) ) × 1T(𝑋 )

)
= 1(T(𝑋 )→T(𝑋 ) )×T(𝑋 ) . So we may

finally compute that:

T(fix𝑋𝐴 (𝑓 )) = T(eval𝑋,𝑋 ) ◦ T(𝑟 × 1𝑋 ) ◦ T(Δ𝑋 ) ◦ T(𝑢)
= T(eval𝑋,𝑋 ) ◦ T(𝑟 × 1𝑋 ) ◦ 𝑐 ◦ ΔT(𝑋 ) ◦𝑤

= T(eval𝑋,𝑋 ) ◦ 𝑐 ◦
(
T(𝑟 ) × 1T(𝑋 )

)
◦ ΔT(𝑋 ) ◦𝑤

= evalT(𝑋 ),T(𝑋 ) ◦ ((𝜋1 ⇒ 1T(𝑋 ) × 1T(𝑋 ) ) ◦ 𝑐◦(
(⟨1𝑋 , 0⟩ ⇒ 1T(𝑋 ) ) × 1T(𝑋 )

)
◦

(
𝑟T(𝑋 ) × 1T(𝑋 )

)
◦ ΔT(𝑋 ) ◦𝑤

= evalT(𝑋 ),T(𝑋 ) ◦
(
𝑟T(𝑋 ) × 1T(𝑋 )

)
◦ ΔT(𝑋 ) ◦𝑤

= fix𝑋𝐴 (T(𝑓 ) ◦ 𝑐)
So the tangent-fixpoint rule holds as desired. Note that the unique-

ness requirement can be weakened if we assume that the factoring

morphisms for 𝑟𝑋 and 𝑟T(𝑋 ) are chosen in a uniform way.

8 NEWTON-RAPHSON ITERATION SCHEME
Newton-Raphson iteration has been extended to Kleene algebras or

more generally power series over semi-rings [27, 28, 39, 43] where

systems of equations in this setting can represent context-free gram-

mars, data-flow equations, authorization problems, datalog queries

etc. Newton iteration always converges for power series over 𝜔-

continuous semi-rings and if we restrict to idempotent semi-rings,

then it was shown to converge after a finite number of steps [27].

Similar ideas were also developed for enumerative combinatorics to

compute efficiently large combinatorial structures that are defined

via fixpoint equations [18, 54, 55]. In the combinatorial setting,

the series always have positive coefficients corresponding to the

number of structures of a given size and it also leads to a Newton

iteration scheme that is always convergent.

Since combinatorial species are first order terms of a Cartesian

differential fixpoint (bi)category [29] and power series over a con-

tinuous semi-ring are a subcategory of the weighted relational

model, we were motivated to develop a general Newton-Raphson

approximation scheme for Cartesian differential fixpoint categories

which we present below. While the following construction works

for the more general setting of Cartesian differential categories, we

chose to present it in the Cartesian closed framework to emphasize

the viewpoint of optimization procedures as higher order operators.

8.1 Newton approximants
We start by recalling the standardNewton-Raphson iterationmethod

to find or approximate fixpoints for real-valued functions. For a

differentiable function 𝑓 : R → R verifying 𝑓 ′ (𝑎) ≠ 1 for all 𝑎 ∈ R,
we consider a sequence of Newton approximants {𝑧𝑛}𝑛∈𝜔 with

𝑧0 ∈ R an initial chosen value and for each 𝑛, 𝑧𝑛+1 := N(𝑓 ) (𝑧𝑛)
where N(𝑓 ) : R → R is defined as

N(𝑓 ) : 𝑎 ↦→ 𝑎 + 1

1 − 𝑓 ′ (𝑎) · (𝑓 (𝑎) − 𝑎) .

The sequence {𝑧𝑛}𝑛∈𝜔 may not converge or may not converge to

a fixpoint of 𝑓 but under suitable conditions on 𝑓 , it converges to a

fixpoint and the convergence rate is quadratic. Note first that the

quotient
1

1−𝑓 ′ (𝑎) = 1 + 𝑓 ′ (𝑎) + (𝑓 ′ (𝑎))2 + . . . is a solution of the

fixpoint equation

1

1 − 𝑓 ′ (𝑎) = 1 + 𝑓 ′ (𝑎) · 1

1 − 𝑓 ′ (𝑎)
which corresponds exactly to the repetition operator fixpoint equa-

tion 5.6. The general idea of Newton-Raphson iteration in our set-

ting is to accelerate the computation of the non-linear fixpoint oper-

ator in the Cartesian (closed) category combining derivatives with

the induced linear repetition operator in the category LIN[C] (9).
While we remain in a setting where everything is non-negative,

we want to perform truncated subtractions: for example, in the

semiring of non-negative extended realsR∞
≥0 = ( [0,∞], ≥,×, 1, +, 0),

the truncated subtraction operation 𝑎 ⊖𝑏 corresponds to min{0, 𝑎−
𝑏}. In general, for a Cartesian closed differential fixpoint categoryC,
we know that it is in particular enriched over commutative monoids.

We can equip each hom-set C(𝐴, 𝐵) with the natural order relation

induced by addition (𝑔 ≤ 𝑓 ⇔ ∃ℎ,𝑔 + ℎ = 𝑓 . We assume that for

every 𝑓 in C(𝐴, 𝐵), the maps 𝑓 + (−) and (−) + 𝑓 have right adjoints
for the ≥ ordering. Explicitly, for each 𝑓 , 𝑔, ℎ in C(𝑎, 𝑏), there exist
maps 𝑓 ⊖ 𝑔 and 𝑓 ⊖ ℎ such that

ℎ ≥ 𝑓 ⊖ 𝑔 ⇔ 𝑔 + ℎ ≥ 𝑓 ⇔ 𝑔 ≥ 𝑓 ⊖ ℎ.

It implies the following identities ([2, 10]) for all 𝑓 , 𝑔, ℎ in C(𝑎, 𝑏)
and for every additive map 𝑘 : 𝑏 → 𝑐:

(1) 𝑓 ⊖ 𝑓 = 0

(2) 𝑓 + (𝑔 ⊖ 𝑓 ) = 𝑔 + (𝑓 ⊖ 𝑔)
(3) 𝑓 ⊖ (𝑔 + ℎ) = (𝑓 ⊖ 𝑔) ⊖ ℎ

(4) 𝑘 ◦ (𝑓 ⊖ 𝑔) = (𝑘 ◦ 𝑓 ) ⊖ (𝑘 ◦ 𝑔)
Since for 𝑓 : 𝐴 → 𝐴 in C, D[𝑓 ] : 𝐴 × 𝐴 → 𝐴 is linear in its

second argument, it implies that for any point ⊤ 𝑎−→ 𝐴,

D𝑎 [𝑓 ] := D[𝑓 ] ◦ (𝑎 × 1𝐴) : 𝐴 → 𝐴

is a morphism in LIN[C]. Therefore, (D𝑎 [𝑓 ])∗ : 𝐴 → 𝐴 verifies

the fixpoint equation (D𝑎 [𝑓 ])∗ ·𝑏 = 𝑏 +D𝑎 [𝑓 ] · ((D𝑎 [𝑓 ])∗ ·𝑏). We

can now define a map N : 𝐴 ⇒ 𝐴 → 𝐴 ⇒ 𝐴 corresponding to

Newton-Raphson iteration as follows:

𝑓 ↦→ 𝜆𝑎.(𝑎 + (D𝑎 [𝑓 ])∗ · (𝑓 (𝑎) ⊖ 𝑎))
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To define an analogue of Newton iteration in the parametrized

Cartesian case, we recall first the notion of partial derivative. For a

map 𝑓 : 𝐴×𝐵 → 𝐶 , we can obtain its partial derivative [16, Def 6.2]
from the total derivativeD[𝑓 ] : 𝐴×𝐵×𝐴×𝐵 → 𝐶 by precomposing

with 0 morphisms:

D1 [𝑓 ] := D[𝑓 ] ◦ (1𝐴 × 1𝐵 × ⟨1𝐴, 0⟩) : 𝐴 × 𝐵 ×𝐴 → 𝐶

D2 [𝑓 ] := D[𝑓 ] ◦ (1𝐴 × 1𝐵 × ⟨0, 1𝐵⟩) : 𝐴 × 𝐵 × 𝐵 → 𝐶

In term calculus, we write the partial derivative as:

d𝑓 (𝑥, 𝑏)
d𝑥

(𝑎) · 𝑐 = d𝑓 (𝑥,𝑦)
d(𝑥,𝑦) (𝑎, 𝑏) · (𝑐, 0)

d𝑓 (𝑎,𝑦)
d𝑦

(𝑏) · 𝑐 = d𝑓 (𝑥,𝑦)
d(𝑥,𝑦) (𝑎, 𝑏) · (0, 𝑐)

We can also define higher order derivatives by taking the partial

derivative of the total derivative. For 𝑓 : 𝐴 → 𝐵, we define the 𝑛-th

derivative as 𝑓 (𝑛) := (D1)𝑛 [𝑓 ] : 𝐴 ×𝐴𝑛 → 𝐵, it is non-linear in its

first argument and multi-linear in its last 𝑛 arguments. In the term

calculus, we write this as:

𝑓 (𝑛) (𝑎, (𝑏, . . . , 𝑏)) = d𝑛 𝑓 (𝑥)
d𝑛𝑥

(𝑎) · (𝑏, . . . , 𝑏)

In the parametrized Cartesian case, we define an operator

N : C(𝐴 × 𝑋,𝑋 ) → C(𝐴 × 𝑋,𝑋 )

mapping a morphism 𝑓 : 𝐴 × 𝑋 → 𝑋 to the morphism

(𝑎, 𝑥) ↦→ 𝑥 +
(
d𝑓 (𝑎, 𝑣)

d𝑣
(𝑥)

)∗
· (𝑓 (𝑎, 𝑥) ⊖ 𝑥)

To perform Newton iteration, we assume that C is a Taylor cate-
gory [20, 21, 24, 42], which means that each map 𝑓 : 𝐴 → 𝐵 is equal

to its Taylor expansion:

𝑓 (𝑎 + 𝑏) =
∑︁
𝑛

1

𝑛!

d𝑛 𝑓 (𝑥)
d𝑥

(𝑎) · (𝑏, . . . , 𝑏) (14)

or equivalently for 𝑏 ≤ 𝑎

𝑓 (𝑎) =
∑︁
𝑛

1

𝑛!

d𝑛 𝑓 (𝑥)
d𝑥

(𝑏) · (𝑎 ⊖ 𝑏, . . . , 𝑎 ⊖ 𝑏) (15)

Assume that the fixpoint combinator Y : 𝐴 ⇒ 𝐴 → 𝐴 in C
is obtained by Scott iteration as the supremum Y = ∨𝑛Y𝑛 with

Y0 = 0 and Y𝑛+1 = eval𝐴,𝐴 ◦ ⟨1𝐴⇒𝐴,Y𝑛⟩ where C is assumed to

be 𝜔-cpo enriched. Since the fixpoint operator we consider is the

least fixpoint operator, it implies that the induced linear repetition

operator (Cor 5.7) satisfies the following induction axiom [26] for

all ℎ, 𝑗, 𝑘 ∈ LIN[C] (𝐴,𝐴):

ℎ + 𝑗 ◦ 𝑘 ≤ 𝑘 ⇒ 𝑗∗ ◦ ℎ ≤ 𝑘. (16)

We define a family of morphismZ𝑛 : 𝐴 ⇒ 𝐴 → 𝐴 corresponding

to the Newton approximants:

Z0 = 0 and Z𝑛+1 = eval ◦ ⟨N ,Z𝑛⟩.

Lemma 8.1. For all 𝑛, the following inequalities hold:

Y𝑛 ≤ Z𝑛 ≤ eval ◦ ⟨1,Z𝑛⟩ ≤ Z𝑛+1 ≤ Y

Proof.

• We have Z0 = 0 ≤ eval ◦ ⟨1,Z0⟩ and we assume that for

some 𝑛,Z𝑛 ≤ eval ◦ ⟨1,Z𝑛⟩. For 𝑓 : 𝐴 → 𝐴, we have:

Z𝑛+1 (𝑓 ) = Z𝑛 (𝑓 ) + (DZ𝑛 (𝑓 ) [𝑓 ])
∗ · (𝑓 (Z𝑛 (𝑓 ) ⊖ Z𝑛 (𝑓 ))

Applying the Taylor formula (14) by setting 𝑎 := Z𝑛 (𝑓 ) and
𝑏 := (DZ𝑛 (𝑓 ) [𝑓 ])∗ · (𝑓 (Z𝑛 (𝑓 ) ⊖ Z𝑛 (𝑓 )), we obtain
𝑓 (Z𝑛+1 (𝑓 )) = 𝑓 (𝑎 + 𝑏) ≥ 𝑓 (𝑎) + D𝑎 [𝑓 ] · 𝑏 ≥ Z𝑛+1 (𝑓 )
where the last inequality is obtained from unfolding the

repetition operator in the expression of 𝑏.

• For all 𝑛 ∈ N, the inequality eval ◦ ⟨1,Z𝑛⟩ ≤ Z𝑛+1 = eval ◦
⟨N ,Z𝑛⟩ follows from the inequality 1𝐴⇒𝐴 ≤ N .

• We show that for all 𝑛, Y𝑛 ≤ Z𝑛 . The base case is trivial,

and if we assume that Y𝑛 ≤ Z𝑛 for some 𝑛, then we have:

Y𝑛+1 (𝑓 ) = 𝑓 (Y𝑛 (𝑓 )) ≤ 𝑓 (Z𝑛 (𝑓 )) ≤ Z𝑛+1 (𝑓 )
where the last two inequalities were proved above.

• For 𝑓 : 𝐴 → 𝐴, we have Z0 (𝑓 ) = 0 ≤ Y(𝑓 ) and we

want to show that if for some 𝑛, Z𝑛 (𝑓 ) ≤ Y(𝑓 ), then
Z𝑛+1 (𝑓 ) ≤ Y(𝑓 ). To simplify the notation, we write 𝑦 :=

Y(𝑓 ), 𝑧𝑛 := Z𝑛 (𝑓 ) and 𝑧𝑛+1 := Z𝑛+1 (𝑓 ). Using the fixpoint
and dinaturality axioms for the repetition operator, we have:

𝑧𝑛+1 = N(𝑓 ) (𝑧𝑛) = 𝑧𝑛 + (D𝑧𝑛 [𝑓 ])∗ · (𝑓 (𝑧𝑛) ⊖ 𝑧𝑛)
= (D𝑧𝑛 [𝑓 ])∗ · (𝑓 (𝑧𝑛) ⊖ D𝑧𝑛 [𝑓 ] · 𝑧𝑛)

From the induction axiom (16), to establish that 𝑧𝑛+1 ≤ 𝑦, it

suffices to show that

(𝑓 (𝑧𝑛) ⊖ D𝑧𝑛 [𝑓 ] · 𝑧𝑛) + D𝑧𝑛 [𝑓 ] · 𝑦 ≤ 𝑦

⇔ 𝑓 (𝑧𝑛) + D𝑧𝑛 [𝑓 ] · (𝑦 ⊖ 𝑧𝑛) ≤ 𝑦

Since by inductive hypothesis, we have 𝑧𝑛 ≤ 𝑦, we can

apply the Taylor formula (15) to the left-hand side of the

equality 𝑓 (𝑦) = 𝑦 and obtain 𝑓 (𝑧𝑛) + D𝑧𝑛 [𝑓 ] · (𝑦 ⊖ 𝑧𝑛) ≤ 𝑦

as desired. □

As a corollary of Lemma 8.1, we obtain that the Newton chain

converges and approximates the least fixpoint from below as de-

sired.

8.2 Taylor metric and convergence rate
To measure the convergence rate of Newton iteration, we use a

metric induced by the Taylor expansion which can be defined in

any Taylor category [49, 51]. We define a family of operators on

homsetsM𝑛 : C(𝐴, 𝐵) → C(𝐴, 𝐵) mapping a morphism 𝑓 : 𝐴 → 𝐵

to its 𝑛-th Taylor monomial by evaluating the 𝑛-th derivative at 0:

M𝑛 (𝑓 ) (𝑎) :=
d𝑛 𝑓 (𝑥)
d𝑛𝑥

(0) · (𝑎, . . . , 𝑎)

This family of operators induces a pseudo-metric (the separation

axiom does not necessarily hold) on each homset 𝑑 : C(𝐴, 𝐵) ×
C(𝐴, 𝐵) −→ C(𝐴, 𝐵) given by

(𝑓 , 𝑔) ↦−→
{
2
−𝑘

where 𝑘 = inf{𝑛 ∈ N | M𝑛 (𝑓 ) ≠ M𝑛 (𝑔)}
0 if for all 𝑘 ∈ N,M𝑘 (𝑓 ) = M𝑘 (𝑔)

similar to the Arnold-Nivat metric for 𝜆-terms with truncations [3].

In a Cartesian differential category, 𝑑 (𝑓 , 𝑔) = 2
−𝑘

also corresponds

to the intuition 𝑓 (𝑥) − 𝑔(𝑥) = 𝑜 (𝑥𝑘 ) in analysis and we use this

canonical distance for convergence analysis of optimization in our
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setting. The stronger triangle inequality holds for the Taylor pseudo-

metric:

𝑑 (𝑓 , ℎ) ≤ max{𝑑 (𝑓 , 𝑔), 𝑑 (𝑔, ℎ)}.
If C is a Taylor category [20, 21, 24, 42], then the separation axiom

holds and we obtain an ultra-metric [49, 51].

For the convergence rate, we show that for a map 𝑓 : 𝐴 → 𝐴,

we have 𝑑 (Z𝑛+1 (𝑓 ),Y(𝑓 )) = 1

2
(𝑑 (Z𝑛 (𝑓 ),Y(𝑓 )))2. To simplify

the notation, we write again 𝑦 := Y(𝑓 ), 𝑧𝑛 := Z𝑛 (𝑓 ) and 𝑧𝑛+1 :=
Z𝑛+1 (𝑓 ). As before, we have

𝑧𝑛+1 = (D𝑧𝑛 [𝑓 ])∗ · (𝑓 (𝑧𝑛) ⊖ (D𝑧𝑛 [𝑓 ]) · 𝑧𝑛) (17)

Since 𝑦 = 𝑓 (𝑦) and 𝑧𝑛 ≤ 𝑦, we can apply the Taylor formula (15)

and obtain

𝑦 = 𝑓 (𝑧𝑛) + (D𝑧𝑛 [𝑓 ]) · (𝑦 ⊖ 𝑧𝑛) +
∑︁
𝑘≥2

d𝑘 𝑓 (𝑣)
d𝑘𝑣

(𝑧𝑛) · (𝑦 ⊖ 𝑧𝑛)𝑘

From the equality above and (17), using the fact that D𝑧𝑛 [𝑓 ])∗ is
linear and therefore additive, we obtain that D𝑧𝑛 [𝑓 ])∗ · 𝑦 is equal

to:

𝑧𝑛+1+(D𝑧𝑛 [𝑓 ])∗·(D𝑧𝑛 [𝑓 ]·𝑦)+(D𝑧𝑛 [𝑓 ])∗·
(∑︁
𝑘≥2

d𝑘 𝑓 (𝑣)
d𝑘𝑣

(𝑧𝑛) · (𝑦 ⊖ 𝑧𝑛)𝑘
)

Unfolding the fixpoint axiom and using the dinaturality axioms, we

also have:

(D𝑧𝑛 [𝑓 ])∗ · 𝑦 = 𝑦 + (D𝑧𝑛 [𝑓 ]) · ((D𝑧𝑛 [𝑓 ])∗ · 𝑦)
= 𝑦 + (D𝑧𝑛 [𝑓 ])∗ · ((D𝑧𝑛 [𝑓 ]) · 𝑦)

Therefore, 𝑑 (𝑧𝑛+1, 𝑦) is equal to

𝑑 (0, (D𝑧𝑛 [𝑓 ])∗ ·
∑︁
𝑘≥2

d𝑘 𝑓 (𝑣)
d𝑘𝑣

(𝑧𝑛) · (𝑦 ⊖ 𝑧𝑛)𝑘 ) =
1

2

(𝑑 (𝑧𝑛, 𝑦))2 .

We now state the main theorem of this section:

Theorem 8.2.

(1) The family of Newton approximants{Z𝑛}𝑛∈𝜔 is an 𝜔-chain
and its supremum Z := ∨𝑛Z𝑛 verifies Z = Y and for all
𝑛, Z𝑛 ≤ Y, which means that the Newton approximants
converge to the least fixpoint from below.

(2) The convergence rate is quadratic1: for all 𝑛, if we consider the
canonical distance induced by the Taylor monomials, then

𝑑 (Z𝑛+1,Y) = 1

2

(𝑑 (Z𝑛,Y))2 .

9 CONCLUSION AND FUTUREWORK
In this paper, we provided a categorical framework for combining

the theory of differentiation and the theory of fixpoints. We intro-

duced the notion of Cartesian differential fixpoint categories (Sec

3), and studied the case of Conway operators (Sec 4), the relation

between linearity and fixpoints (Sec 5), and the closed setting (Sec

6). We showed how many well-known examples are Cartesian dif-

ferential fixpoint categories, such as weighted relations (Sec 7.2),

quantales profunctors (Sec 7.4), models induced by bifree algebras

(Sec 7.5), and those induced by fixpoint objects (Sec 7.6). We also

showed how the Newton-Raphson scheme can be applied in our

1
In the works on Newton’s method for power series over 𝜔-continuous semi-rings

(e.g.[43]), the terminology of exponential convergence is sometimes used as the number

of accurately computed monomials of the power series doubles at each iteration. This

is equivalent to quadratic convergence for the Taylor metric.

framework (Sec 8). We conclude with a brief discussion on potential

future work and directions that build on the story of this paper.

Since the tangent bundle functor played such a crucial role, the

first natural direction to take is to study tangent categories [13] with

fixpoint operators, where the defining axiom will be the tangent-

fixpoint rule (8). Moreover, (8) should also be considered as an

axiom for tangent categories with trace operators in the general

monoidal setting.

There are also cofree Cartesian differential categories which

are built via the Faà di Bruno construction [17, 34]. We aim to

study parametrized fixpoint operators in these cofree models or

understand how the Faa di Bruno construction can be used to build

new examples of Cartesian differential fixpoint categories.

Cartesian reverse differential categories [15] provide the cate-

gorical foundations of reverse differentiation, an important tool for

automatic differentiation. Since fixpoints are also an important tool

for automatic differentiation [53], it would be worthwhile to un-

derstand the compatibility relation between parametrized fixpoint

operators and reverse differential combinators.

Many optimization schemes are based on refinements of the

Newton-Raphson method. We would like to extend our construc-

tion to other iterative methods and study their application to ap-

proximate solutions of differential equations in our setting.

There are also many cases where we can only obtain fixpoints

defined on a restricted domain which are used when we are in-

terested in local minima or maxima and not global solutions. We

therefore aim to develop a theory of fixpoints for differential restric-
tion category [14] which would allow us to capture local implicit

function theorems that are more used in practice.
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