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A B S T R A C T   

Water Sensitive Urban Design (WSUD) has attracted growing attention as a sustainable approach for mitigating 
pluvial flooding (also known as flash flooding), which is expected to increase in frequency and intensity under 
the impacts of climate change and urbanisation. However, spatial planning of WSUD is not an easy task, not only 
due to the complex urban environment, but also the fact that not all locations in the catchment are equally 
effective for flood mitigation. In this study, we developed a new WSUD spatial prioritisation framework that 
applies global sensitivity analysis (GSA) to identify priority subcatchments where WSUD implementation will be 
most effective for flood mitigation. For the first time, the complex impact of WSUD locations on catchment flood 
volume can be assessed, and the GSA in hydrological modelling is adopted for applications in WSUD spatial 
planning. The framework uses a spatial WSUD planning model, the Urban Biophysical Environments and 
Technologies Simulator (UrbanBEATS), to generate a grid-based spatial representation of catchment, and an 
urban drainage model, the U.S. EPA Storm Water Management Model (SWMM), to simulate catchment flooding. 
The effective imperviousness of all subcatchments was varied simultaneously in the GSA to mimic the effect of 
WSUD implementation and future developments. Priority subcatchments were identified based on their influence 
on catchment flooding computed through the GSA. The method was tested for an urbanised catchment in Sydney, 
Australia. We found that high priority subcatchments were clustering in the upstream and midstream of the main 
drainage network, with a few distributed close to the catchment outlets. Rainfall frequency, subcatchment 
characteristics, and pipe network configuration were found to be important factors determining the influence of 
changes in different subcatchments on catchment flooding. The effectiveness of the framework in identifying 
influential subcatchments was validated by comparing the effect of removing 6% of the Sydney catchment’s 
effective impervious area under four WSUD spatial distribution scenarios. Our results showed that WSUD 
implementation in high priority subcatchments consistently achieved the largest flood volume reduction (3.5- 
31.3% for 1% AEP to 50% AEP storms), followed by medium priority subcatchments (3.1-21.3%) and catchment- 
wide implementation (2.9-22.1%) under most design storms. Overall, we have demonstrated that the proposed 
method can be useful for maximising WSUD flood mitigation potential through identifying and targeting the 
most effective locations.   

1. Introduction 

Pluvial or rain-related flooding, caused by intense precipitation 
exceeding the capacity of stormwater drainage systems, is expected to 

increase in frequency and intensity under climate change and urbani-
sation (IPCC, 2021). Traditional urban flood management relies on 
engineered drainage systems such as gutters and pipes to convey 
stormwater away (Rosenzweig et al., 2018). However, there has been 
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growing recognition that such single-purpose systems are becoming 
increasingly unaffordable to maintain and expand to meet growing de-
mands, urging a paradigm shift to more sustainable approaches (Ashley 
et al., 2020). 

In light of this, Water Sensitive Urban Design (WSUD), alternatively 
known as Sustainable Urban Drainage Systems, Low Impact Develop-
ment and Sponge Cities (Fletcher et al., 2015; Yin et al., 2021), has been 
proposed. With an aim to minimise impacts of urban development on the 
natural water cycle, WSUD manages stormwater quality and quantity 
through decentralised infrastructures such as green roofs, permeable 
pavements, bio-retention cells, constructed wetlands and rainwater 
tanks (Lloyd et al., 2002). Through retention and detention of surface 
runoff, these technologies have been found effective in mitigating 
flooding, especially small and frequent floods (Myers and Pezzaniti, 
2019). These diverse infrastructure options offer flexibility in how they 
can be distributed across the urban environment (Zhang and Chui, 
2018). Studies have shown that targeted locations for WSUD imple-
mentation led to better performance in flood mitigation than random or 
homogeneous placement across the catchment (Ercolani et al., 2018; 
Webber et al., 2019). However, spatial planning of WSUD in the complex 
urban environment with physical and socio-economic constraints is not 
an easy task (Zhang and Chui, 2018). 

Several spatial WSUD planning support tools and models, such as 
SUSTAIN (Lee et al., 2012), SUDSLOC (Viavattene and Ellis, 2013) and 
the Adaptation Support Tool (van De Ven et al., 2016), have been 
developed to assist decision makers in finding feasible locations for 
WSUD. Many of these models rely on the users to specify specific WSUD 
types and designs, which can be time-consuming with limited options 
explored. A recently developed planning tool, UrbanBEATS (Bach et al., 
2020), allows systematic exploration of thousands of combinations of 
feasible WSUD options and spatial layouts across the urban landscape to 
meet stormwater harvesting and pollution control objectives in a timely 
manner. UrbanBEATS has been applied to explore the effect of spatial 
distribution of rainwater harvesting on water supply networks (Sitzen-
frei et al., 2017) and the robustness of WSUD implementation scenarios 
for stormwater pollution management (Castonguay et al., 2018). How-
ever, urban flood mitigation has not been included as an objective in 
UrbanBEATS. Indeed, installing WSUD wherever possible lacks strategic 
consideration of the best location for effective flood mitigation (Zhang 
and Chui, 2018). Identification of priority locations for WSUD imple-
mentation is vital for maximising WSUD’s potential for flood mitigation, 
but such spatial prioritisation is currently lacking in WSUD planning 
support tools. 

Various types of locations have been prioritised for WSUD imple-
mentation to mitigate flooding. Flood-prone areas are a commonly tar-
geted location to apply WSUD for on-site flood impact reduction (Lu 
et al., 2019). Alternatively, recognising the need to address flooding at 
its source, flood source area has attracted growing attention (Singh 
et al., 2021). As pluvial flooding is caused by excess stormwater runoff, 
subcatchments with characteristics contributing to high probability of 
runoff generation are often prioritised. These characteristics include 
upstream locations (Kapetas and Fenner, 2020), high impervious area 
ratios (Samouei and Özger, 2020), steep slopes and soils of low infil-
tration rates (Kaykhosravi et al., 2019). However, there is high uncer-
tainty in the occurrence of pluvial flooding due to influence of rainfall 
characteristics and performance of existing urban drainage systems 
(Penning-Rowsell and Korndewal, 2019), which means simple sub-
catchment characteristics may not be sufficient for identifying influen-
tial flood source locations. For example, Vercruysse et al. (2019) 
reported high contributions to catchment maximum flood depth from 
downstream subcatchments. This finding was based on results from 
analysing the sensitivity of catchment flooding to removal of rainfall 
input in individual subcatchments. Similarly, Zischg et al. (2018) and 
Rodriguez et al. (2021) identified priority locations for WSUD imple-
mentation by successively implementing fixed extent of WSUD in each 
subcatchment and assessing the corresponding changes in catchment 

flood volume. A bioretention of 500m2 was placed in each subcatchment 
in Zischg et al. (2018)’s study, and the maximum spatial extent for 
bioretention cells, green roofs and permeable pavements in each sub-
catchment was modelled in the work of Rodriguez et al. (2021). Sim-
perler et al. (2020) calculated the discharge reduction potential of each 
subcatchment by disconnecting that subcatchment from the drainage 
network in each simulation. As there was no correlation between sub-
catchments’ discharge reduction potential and their impervious area 
size or their distance from the overflow point, the authors stressed the 
importance of applying sensitivity analysis for WSUD spatial 
prioritisation. 

Current research on WSUD spatial prioritisation has seen popular 
applications of local sensitivity analysis (LSA), in which the response of 
the model output (i.e., catchment flooding) to variations in the model 
parameters (i.e., changes in subcatchments) is evaluated based on 
changing the value of a single model parameter (e.g., rainfall input or 
runoff volume in a single subcatchment) around a nominal value one at 
a time, whilst keeping all other parameters fixed (Saltelli and Annoni, 
2010). Despite its popularity, there are numerous issues with the 
application of LSA in WSUD spatial prioritisation. First, traditional LSA 
has been criticised for their limited applicability to non-linear models 
and inability to consider interactions between parameters (Saltelli and 
Annoni, 2010; Song et al., 2015). However, studies have reported 
non-linear changes in catchment flooding as WSUD implementation 
level increased (Zeng et al., 2019). In addition, the effect of interactions, 
i.e., the compounding effect of implementing WSUD in two or more 
subcatchments at the same time on catchment flooding, is not consid-
ered in LSA. Furthermore, studies often only simulated limited possible 
scenarios in each subcatchment, either complete removal of runoff 
(Simperler et al., 2020), or maximum possible WSUD implementation 
based on current land use (Rodriguez et al., 2021). Given uncertainty in 
the nature of future urban development, it is critical to understand the 
catchment’s response to a wide range of WSUD implementation sce-
narios across the catchment for identifying futureproof, effective loca-
tions for flood mitigation. 

In this paper, we present a novel WSUD spatial prioritisation 
framework for pluvial flood mitigation, using Global Sensitivity Analysis 
(GSA) to identify effective subcatchments where WSUD implementation 
would lead to optimum flood volume reduction under a range of design 
storms. GSA explores the entire range of possible values of all input 
parameters and their interactions, making it well suited for analysing 
non-linear models and assessing effects of parameter interactions (Song 
et al., 2015). It has been useful for identifying influential parameters in 
hydrological models (Wang and Solomatine, 2019) and urban drainage 
models (Vanrolleghem et al., 2015). To our knowledge, this is the first 
framework for WSUD spatial prioritisation for pluvial flood mitigation 
using GSA. By coupling UrbanBEATS and SWMM, and then applying 
GSA, we introduce a simple approach to simulate all possible extents of 
WSUD implementation and future development scenarios through 
changes in effective impervious area (EIA) ratio of subcatchments, as a 
proxy for WSUD’s effect in reducing runoff by converting impervious 
area to pervious. This enables assessment of the complex impact of 
WSUD implementation in different locations on catchment flooding for 
the first time. Based on the influence of subcatchments on flooding 
under all design storms, priority subcatchments that are futureproof for 
achieving effective flood mitigation can be identified. This work also 
provides the basis for setting a simple and quantifiable target for the 
selection of WSUD design and types at subcatchment scale to meet 
catchment-wide flood mitigation targets, which is an essential part of 
WSUD planning for pluvial flood mitigation. 

2. Methodology 

2.1. Proposed WSUD Spatial Prioritisation Framework 

The proposed framework consists of four modules (M1-4, Fig. 1). 
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Module M1 involves setting up a flood model to simulate pluvial 
flooding. A GSA algorithm is applied in Module M2 using inputs and 
outputs of the flood model to assess the sensitivity of catchment flooding 
to changes in the effective impervious area (EIA) ratio of different 
subcatchments. The results from the GSA are used to prioritise sub-
catchments in Module M3. Finally, the effectiveness of the prioritised 
subcatchments for flood reduction is validated in Module M4. 

M1. Flood Model Set-up 

M1.1. Subcatchment Delineation. A spatial representation of the catch-
ment is produced using UrbanBEATS (Bach et al., 2020), with input data 

including the catchment boundary, elevation, land use types, population 
density, and soil types generated through ArcMap. Subcatchments are 
delineated into scalable grid-cells, known as “blocks”, using Urban-
BEATS’ GIS-based automated block delineation. Each “block” contains 
aggregated spatial information from the input data, including key 
characteristics such as imperviousness which is essential for runoff 
estimation (Bach et al., 2018). Such uniform, block-based subcatchment 
delineation has been applied in previous flood source identification 
studies (Saghafian et al., 2010; Vercruysse et al., 2019). It reduces the 
influence of subcatchment size on flood contribution and offers 
simplicity in communicating with stakeholders for WSUD planning. It 
also provides matching spatial scales for future coupling with Urban-
BEATS to select optimal WSUD options for flood mitigation. 

Fig. 1. Overview of WSUD spatial prioritisation 
framework for pluvial flood mitigation. Module M1 
prepares a flood model for the study area, with sub-
catchments delineated into grid-shape in UrbanBEATS 
(M1.1) and connected to stormwater pipe networks in 
SWMM (M1.2). Module M2 applies a global sensitivity 
analysis (GSA) algorithm to assess the influence of 
changes in the effective impervious area (EIA) ratio of 
different subcatchments on catchment flooding 
(M2.1). Subcatchments are ranked based on their total 
order sensitivity indices (TOSI) and are grouped into 
High, Medium and Low Influence Groups (M2.2). 
Convergence of subcatchment influence groups is 
conducted to select three sample sizes in the GSA for 
robust results (M2.3). In Module M3, subcatchment 
influence groups under the selected sample sets are 
used to determine subcatchment influence levels 
under each design storm, and their final priority 
ranking (M3.1-3.2). The effect of interactions between 
subcatchments on catchment flooding is also assessed 
(M3.3). Finally, the effectiveness of prioritised sub-
catchments for flood reduction is validated in Module 
M4 by comparing four WSUD spatial distribution sce-
narios. Dashed line boundary indicates input data.   
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M1.2. SWMM Model Preparation. Catchment flood simulation is per-
formed using the U.S. EPA Storm Water Management Model (SWMM) 
(Rossman, 2010), one of the most commonly used models in urban 
drainage flood simulation (Jamali et al., 2020; Niazi et al., 2017). 
Subcatchment properties such as subcatchment area, imperviousness, 
and slope in SWMM are set based on M1.1’s output catchment shapefile 
from UrbanBEATS. Each subcatchment’s outlet is set to the nearest inlet 
node in the pipe network in SWMM following slope gradients. Ten 
design storms of 1-50% annual exceedance probabilities (AEPs) under 
short and long durations are simulated to assess the catchment response. 
The rainfall temporal pattern that resembles the average peak runoff in 
ten temporal patterns for a given AEP and duration is selected to reflect 
natural storm variability (Ball et al., 2019). 

M2. Sensitivity Analysis 
A popular GSA algorithm known as the extended Fourier Amplitude 

Sensitivity Test (eFAST) (Saltelli et al., 1999) is applied to assess the 
sensitivity of catchment flooding to changes in the EIA ratio in sub-
catchments. The eFAST algorithm is a variance-based method, which 
quantifies the variability in the model output caused by variability of 
individual model parameters and parameter interactions (Norton, 
2015). It is capable of generating accurate and robust results at higher 
computational efficiency than other variance-based methods (Saltelli 
et al., 1999; Song et al., 2015). 

An open-source Python package called SALib (Herman and Usher, 
2017) is deployed to perform eFAST, generating two outputs: the First 
Order Sensitivity Indices (FOSI) and the Total Order Sensitivity Indices 
(TOSI). FOSI quantifies what proportion of variations in the model 
output is caused by varying a single parameter; TOSI accounts for 
additional variations in the model output caused by that parameter’s 
interactions with others. The effect of a parameter’s interactions with 
others on the model output can be quantified by the arithmetic differ-
ence between its TOSI and FOSI. 

M2.1. Sensitivity Analysis Model Set-up. Using SALib, four steps are 
involved to compute FOSI and TOSI for each subcatchment. In Step 1, 
the EIA ratio of each individual subcatchment in the catchment is set as 
an input parameter in the eFAST algorithm, with a value range of 0- 
100%. This value range allows consideration of all possible extent of EIA 
in the subcatchment, representing possible scenarios of future devel-
opment (increase in EIA) and effects of WSUD implementation in con-
verting EIA into pervious area, thus reducing the amount of runoff 
generated in EIA from entering drainage networks (reduction in EIA). 
Previous studies have introduced concepts to quantify and represent the 
effectiveness of WSUD for stormwater quality control in relation to 
imperviousness. Walsh et al. (2009) used an index called “retention 
capacity” to quantify the degree of disconnection between effective 
impervious area and its receiving waters. Zhang et al. (2020) introduced 
an indicator called “impervious area offset” to provide a 
straight-forward representation of how much additional impervious 
area can be left untreated due to implementation of stormwater har-
vesting measures to meet a set pollution control objective. Similar 
practice of simulating the effect of WSUD for stormwater quantity 
management through changes in imperviousness has also been applied 
in the work of Löwe et al. (2017), where the effect of rainwater har-
vesting tanks on runoff and flood risk reduction was computed by con-
verting the roof area of buildings from impervious area to pervious area 
when rainwater tanks were installed in the building. A key merit of this 
approach is that it provides simplicity in simulating possible runoff 
reduction scenarios in each subcatchment without the burden of 
exploring and setting up countless possible WSUD types, designs and 
sizes in each subcatchment in SWMM model. It also provides the basis 
for setting runoff volume reduction targets at subcatchment levels, 
calculated by changes in runoff due to reduction in EIA, to select 
appropriate sizes of WSUD design to meet flood mitigation objectives at 

catchment scale. 
In Step (2), a sample set containing all input parameters’ values 

within the defined value ranges is generated using the eFAST sampling 
algorithm in SALib. The size of the sample set is determined by Eq. (1): 

N = n × D (1)  

where N is the size of the sample set (i.e., total number of SWMM model 
simulations), n is the size of base samples (user-defined), and D is the 
number of model input parameters (i.e., number of subcatchments each 
with a corresponding EIA). As N is a function of n, the chosen value of n 
determines the size of N required to obtain reliable results for the 
sensitivity analysis and its computational cost (Pianosi et al., 2016). The 
process of deciding an optimal value of n is given in M2.3. 

In Step (3), the SWMM model is run with new EIA ratio values from 
the generated sample set. The resulting catchment flood volume (i.e., 
total node flooding in the unit of 10^6 litre) and peak flow rates (litre per 
second) are recorded and processed in Step (4) using SALib’s eFAST 
analysis algorithm to compute FOSI and TOSI for each subcatchment. 

In Step (4), a simple summation of catchment flood volume values 
and peak flow rate values is used to represent catchment flooding. While 
catchment flood volume is the primary performance indicator in our 
study, preliminary analysis showed that using peak flow rate accelerated 
the process of identifying influential subcatchments when there was no 
or limited node overflowing. As catchment flood volume values are 
usually significantly larger than peak flow, adding peak flow rate is 
expected to have limited impact on the prioritisation results. 

Step (1)-(4) is repeated using SWMM models with ten design storms 
created in M1.2. They are of 1%, 5%, 10%, 20%, and 50% AEPs under 
short and long durations, with varying rainfall temporal patterns. 

M2.2. Subcatchment Rank-based Grouping. The TOSI value of each 
subcatchment from M2.1 is used to determine the subcatchment’s 
ranking in terms of its influence on catchment flooding. TOSI is used 
instead of FOSI, because a larger TOSI value indicates a stronger influ-
ence of a subcatchment on flood volume both by itself and through its 
interactions with others. As it would take more than a handful of sub-
catchments to implement WSUD to achieve substantial reduction in 
flooding, subcatchments are further categorised into three influence 
groups based on their ranking: High Influence (top third), Medium In-
fluence (median third) and Low Influence (bottom third). 

M2.3. Convergence Test. To ensure robustness of the sensitivity analysis 
results, an appropriate base sample size n is pivotal. If n is too small, it 
does not generate enough samples to explore the entire range of the 
input parameters values for quantifying their impacts on model output; 
if n is too big, it results in unnecessarily large sample set (N). Therefore, a 
convergence test is necessary for identifying the minimum n that bal-
ances result robustness and computational expense. 

The size of n depends on several factors including the number of 
input parameters, the level of model complexity, and the type of 
convergence of interest (e.g., convergence of sensitivity indices or 
ranking order of parameters based on the sensitivity indices) (Sarrazin 
et al., 2016; Wang and Solomatine, 2019). For the purpose of our study, 
convergence of subcatchment ranking orders is adopted because it is 
well-suited for identifying top ranking influential subcatchments and is 
more computationally economic, requiring fewer samples than conver-
gence of TOSI values (Sarrazin et al., 2016). To further reduce the 
computational cost, convergence is consider reached when a subcatch-
ment’ ranking stays in the same influence group as n increases. The 
convergence test is carried out by repeatedly running Step (2) to (4) in 
M2.1, and M2.2 with increasing value of n, at an interval of 2000 until 
there is no change in the subcatchments’ influence groups based on their 
rankings. When over 80% of the subcatchments in the catchment has 
reached convergence under all design storms, the three largest n are 
considered sufficient and the three sample sets created using these three 
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n values are selected. The resulting subcatchment TOSI values, ranking 
orders, and influence groups from these three sample sets are used in 
M3. 

M3. Subcatchment Prioritisation 
Results from M2.3 are processed to decide subcatchments’ final in-

fluence levels under each design storm, assess effect of interactions be-
tween subcatchments on catchment flooding and determine 
subcatchment priorities. 

M3.1. Subcatchments Influence and Certainty Levels Categorisation. A 
final influence level (High, Medium, and Low) of each subcatchment is 
determined according to its influence group results based on TOSI values 
from the sensitivity analysis using the largest sample set, because the 
largest sample set is believed to provide the most robust results among 
the three sample sets. Subcatchments that are in the same influence 
groups under all three sample sets have high certainty in their influence 
level; those with fluctuations in their influence groups over the three 
sample sets are marked with low certainty. The influence levels and 
certainty levels of each subcatchment under all design storms are 
compared and analysed. 

M3.2. Subcatchments Interaction Assessment. Under each design storm, 
the effect of each subcatchment’s interactions with other subcatchments 
on catchment flooding (known as EffectInt’) is quantified by the arith-
metic difference between the subcatchment’s TOSI and FOSI values from 
the sensitivity analysis with the largest sample set. 

M3.3. Final Priority Grouping. A scoring system is applied to decide the 
priority order of subcatchments based on their final influence levels 
(from M3.1) across all design storms. For each design storm, each sub-
catchment is awarded 10 points for having high influence, 5 for medium 
and 0 for low. The total score for each subcatchment is then used to rank 
their priority and decide their priority groups. Three priority groups 
(High, Medium, Low Priority Subcatchments) containing equal number 
of subcatchments are created. 

M4. Validation of Spatial Prioritisation’s Effectiveness for Flood Mitigation 
We apply a validation method adopted from published studies (Zeng 

et al., 2019; Zischg et al., 2018) to assess the effectiveness of the pro-
posed framework in identifying priority subcatchments. WSUD is 
assumed to be implemented (1) catchment-wide (evenly in every sub-
catchment); (2) in High Priority Subcatchments only; (3) in Medium 
Priority Subcatchments only; (4) in Low Priority Subcatchments only. 
Under each scenario, the same total amount of EIA in the catchment is 
reduced to represent WSUD implementation (i.e., the connected 
impervious area is converted to pervious area, reducing runoff to the 
receiving drainage system). The total EIA to be reduced is calculated as: 

EIATotal = EIAMin × XPG (2)  

where EIATotal is the total amount of effective impervious area (EIA) to 
be reduced in the catchment, EIAMin is the numerical size of EIA in the 
smallest subcatchment and XPG is the number of subcatchments in each 
priority group. 

Under Scenario (1) catchment-wide implementation, EIATotal is 
evenly distributed across the catchment, and the amount of EIA to be 
reduced in each subcatchment, EIACW, is calculated as: 

EIACW = EIATotal ÷ XTotal (3)  

where XTotal is the total number of subcatchments in the catchment. 
Under Scenario (2)-(4) with targeted-implementation in High, Me-

dium and Low Priority Subcatchments only, EIATotal is only distributed to 
the subcatchments in the priority group considered in the scenario. 
Thus, Eq. (3) is modified to: 

EIATI = EIATotal ÷ XPG (4)  

where EIATI is the amount of EIA to be reduced in each subcatchment in 
the priority group, and XPG is the number of subcatchments in the pri-
ority group. 

The effectiveness of each scenario under each design storm is then 
assessed by: 

Vreduction% =
Vbaseline − Vscenario

Vbaseline
(5)  

where Vreduction% is the percentage reduction in catchment flood volume, 
Vbaseline is the baseline catchment flood volume under current land use, 
and Vscenario is the catchment flood volume under each WSUD distribu-
tion scenario. 

2.2. Case study application 

The proposed framework was applied in Coogee catchment in Syd-
ney, Australia; a highly urbanised and steep catchment draining east-
ward into the sea (Fig. 2). Approximately 80% of the catchment is 
connected to a large stormwater pipe network, and the Southern part of 
the catchment is drained by smaller local pipe networks (Williams, 
2013) (Fig. 2b). Most of the pipe networks were designed to cope with 
rainfalls of 20% AEP to 10% AEP (Williams, 2013). Previous floodplain 
risk assessment commissioned by Randwick City Council has revealed 
significant impact of flooding on the catchment, with nearly $2.1 million 
annual average damage on properties (Griffin, 2016). 

A spatial representation of the catchment was created using Urban-
BEATS with subcatchments delineated into blocks of 250 × 250m (6.25 
ha), a subcatchment size that has been tested and validated in Bach et al. 
(2018) (see Appendix A1 for input data source). This size resulted in a 
manageable number of subcatchments and produced similar runoff 
volume to a finer block size of 200 × 200m. A total of 57 subcatchments 
with a total area of 286.89 ha were set up in SWMM (see Appendix A2 
for SWMM data preparation). Note that due to limited data available, 
the SWMM model in this study was not calibrated. Future applications of 
the framework should be used with a calibrated model if feasible. 

Ten design storms were created using local rainfall data, covering 
design storms of 1%, 5%, 10%, 20%, and 50% AEPs under short (90min) 
and long (360min) durations (see Appendix A3 for rainfall intensity and 
rainfall distribution). 

Convergence tests showed that sample sets created with base sample 
size n = 6000, 8000, and 10,000 were sufficient to reach convergence for 
over 80% of the subcatchments under all ten design storms, except 
under the 50% AEP 360min duration rainfall (see Appendix A5 for de-
tails). Only 77% of subcatchments reached convergence under this 50% 
AEP event with no signs of increase in convergence even with n =
14000. This is likely a result of limited flooding under low intensity 
rainfall of long duration. The ranking order of subcatchments from the 
largest sample set (created with n =10,000) was used to decide the final 
influence level of subcatchment for prioritisation. Given 57 subcatch-
ments in total, each influence group had 19 subcatchments, as did each 
priority group. 

With the total number of subcatchments in Coogee and the number 
of subcatchments in each priority group, XTotal = 57 and XPG = 19. The 
smallest size of EIA in subcatchments, EIAMin, was 0.6 ha. According to 
Eq. (2), this resulted in EIATotal = 11.4 ha, which is approximately 4% of 
total catchment area and 6% of total catchment EIA. Using Eq. (3) and 
(4), EIACW and EIATI were calculated to be 0.2 ha and 0.6 ha, 
respectively. 
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3. Results and Discussion 

3.1. Subcatchments Influence and Certainty Levels under Different 
Rainfalls 

There were considerable variations in the subcatchment influence 
levels under different design storms (Fig. 3). Only 40% of the sub-
catchments had the same level of influence under all storms. The vari-
ations are likely caused by compounded effects of rainfall 
characteristics, subcatchment locations, and interactions with the pipe 
networks. The spatial distribution of subcatchments of different 

influence levels under different design storms and their relative loca-
tions to the pipe networks are shown in Fig. 4. Under rare rainfalls (e.g., 
1% AEP), the majority of highly influential subcatchments were clus-
tered upstream and midstream of the large pipe network. As reported in 
the literature (Zeng et al., 2019), this is mainly due to the direct in-
fluences these subcatchments had on the amount of runoff entering the 
entire large pipe network, relieving or aggravating flooding down-
stream. In addition, since most of the pipe network was designed for 
managing runoff from rainfalls of up to 10%AEP, catchment flooding is 
more sensitive to changes in these subcatchments under rare and intense 
rainfalls because these subcatchments have a dominating effect in 

Fig. 2. Maps of Coogee (a) land use (classified by URBANBEATS), and (b) subcatchment boundaries and stormwater pipe networks (represented by blue lines). Drain 
outlets are indicated by red dots. Numbers in subcatchments represent subcatchment IDs. 

Fig. 3. Subcatchment influence groups under rainfall of short duration (90min) and long duration (360min).  
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determining whether the pipe’s drainage capacity would be exceeded 
and by how much. 

As rainfall frequency increased, highly influential subcatchments 
became scattered across the catchment, including in downstream areas. 
The spatial dispersion of highly influential subcatchments can be 
attributed to reduction in flooding under more frequent rainfall of lower 
intensity. While changes in the upstream and midstream subcatchments 
would still impact the amount of runoff going into the pipe network, 
their effects on catchment flooding were much less pronounced as the 
pipe network can cope with most of runoff from small rainfalls despite 
large increase in EIA in these subcatchments. In addition, while the 
study area is a steep catchment which facilitates rapid flow of runoff and 
flooding, the impact of catchment slope on flood generation is less sig-
nificant under frequent, low intensity storms, resulting in localised 
conditions to be more influential. Catchment flooding thus became more 
sensitive to localised changes in subcatchments across the catchment. 
This result highlights the importance of considering pipe network 
drainage capacity in identifying influential subcatchments under 
different rainfalls. 

The variation in the spatial distribution of influential subcatchments 
over different rainfall AEPs was observed in both short and long dura-
tion rainfalls. No other distinctive patterns were found when comparing 
subcatchments’ influence between short and long duration rainfalls. 
While some subcatchments (e.g., S6 and S11; Fig. 3) showed a similar 
increase or decrease in their influence levels under both short and long 
duration rainfalls, others displayed completely different patterns (e.g., 
S25, S28 and S48), possibly due to differences in rainfall temporal pat-
terns, local drainage configuration, relative location to the outlets, and 
uncertainty in the subcatchments’ influence levels. 

As rainfall frequency increased, there was growing uncertainty in 
subcatchment influence levels (Fig. 4; see Appendix A5 for data on 
certainty levels). Under 1%AEP events, there was high certainty in those 
highly influential subcatchments clustered in the upstream and 
midstream of the large pipe network, and low certainty in only four 
subcatchments distributed across the catchment. However, under 50% 
AEP events, there were over 10 subcatchments with low certainty in 
their influence levels, all distributed in the areas drained by the large 
pipe network, especially upstream and midstream. Similar to the 

changes observed in influence levels, uncertainty in these subcatch-
ments could be due to overall limited flooding in the drainage systems 
under frequent rainfalls of reduced intensity. Changes in these sub-
catchments had less deterministic effect on causing substantial changes 
in flooding as the pipe networks’ capacity was not always overwhelmed 
under such rainfalls. Similar findings have been reported by Zeng et al. 
(2019) who noted high instability in the effect of WSUD implementation 
in different locations on flood reduction under low intensity rainfall 
events due to small flood volume, followed by gradual stabilisation as 
rainfall intensity increased. 

While previous studies have considered a range of rainfall events in 
identifying influential subcatchments (Rodriguez et al., 2021; Simperler 
et al., 2020), our results provide new insights into how the spatial dis-
tribution of influential subcatchments varied under different rainfall 
frequencies. Considering the notable variations in subcatchment influ-
ence and certainty levels under different rainfall intensities, flood 
mitigation targets set based on rainfall AEPs will have implications on 
the optimum spatial distribution of priority subcatchments for WSUD 
implementation. Rainfall temporal patterns may have contributed to the 
variations in subcatchments’ influence but no distinctive effect of rain-
fall duration on subcatchments’ influence was found. The choice of 
design storms should be given careful consideration to ensure confi-
dence in the prioritised locations. If the main objective is to implement 
WSUD to mitigate flooding from more frequent rainfalls in this catch-
ment, the priority locations for its implementation would be more 
scattered in the catchment. 

Apart from the impact of rainfall, the high uncertainty in subcatch-
ments’ influence levels under frequent rainfalls could be due to strong 
non-linearity in the catchment’s response to variations in these sub-
catchments. While a larger sensitivity analysis sample set size may help 
reach better convergence of these subcatchments’ influence groups, 
there has been reported increase in instability in sensitivity analysis 
results due to high model complexity (Wang and Solomatine, 2019). It is 
possible that because of the complex hydrological and hydraulic re-
sponses of the catchment to variations in subcatchments’ EIA ratio, 
complete stabilisation of these subcatchments’ effect on catchment 
flooding may not be reached even with substantial computational effort. 
More future applications of this framework on flood models for other 

Fig. 4. Influence group and certainty levels of subcatchments under (a) short duration (90min) rainfalls, and (b) long duration (360min) rainfalls. Numbers in the 
subcatchments represent subcatchment ID number. Red lines represent the pipe networks. 
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catchments with different levels of complexity would help build a better 
understanding of such uncertainty in the model. 

3.2. Subcatchment Prioritisation 

Based the subcatchments’ influence levels under ten design storms, 
almost 90% of the high priority subcatchments were found clustered in 
the upstream and midstream of the large stormwater pipe network, with 
a few placed closed to the network outlets (Fig. 5). Among the high 
priority subcatchments, three subcatchments, S14, S19 and S26, were 
highly influential under all design storms (i.e., priority score 100). One 
key factor that contributed to such high influence of S19 is slope. Across 
the catchment, the subcatchments’ slope ranged from 0.11 to 10.15%, 
with a median slope of 5.34%. S19, with a slope of 8.03%, was among 
the steepest subcatchments in the area (for slope map, see Appendix A4). 
Similarly, S47 (priority score 95) had a slope of 7.53%, creating a steep 
gradient for runoff generation, resulting in large influx of runoff at fast 
speed to cause flooding in the receiving conduit. While strong influences 
of catchment slope on flood generation have been observed in absence of 
modelling underground drainage networks (Gao et al., 2018), our study 
further shows that slope is influential for subcatchments’ contribution to 
pluvial flooding. In addition to slope, drainage system configuration also 
plays an important role in subcatchment influence. For example, the 
other two subcatchments with priority score of 100, S14 and S26, have a 
gentler slope (6.14% and 5.4%, respectively) but were both drained by a 
small conduit (0.3m in diameter). In particular, the small conduit 
receiving runoff from S26 was connected to a downstream conduit with 
less steep slope, which acts as a bottleneck to restrict flows from going 
downstream. An increase in the amount of runoff from S26 could easily 
overload this part of the network and cause node flooding. Furthermore, 
the pipe networks configuration can also create compounding effects 
with slope together. For example, S6, one of the high priority sub-
catchments, had the steepest slope (10.15%) in the catchment and was 
drained by a small conduit (0.225m in diameter). Despite its spatial 
proximity to a catchment outlet, this subcatchment was highly influ-
ential on catchment flooding when its EIA ratio was varied. While our 

results confirm the strong influences of upstream subcatchments as 
noted in previous studies (Rodriguez et al., 2021; Zeng et al., 2019), our 
results also show that subcatchments in other parts of the catchment 
could be influential due to local subcatchments characteristics and 
drainage networks configuration. In addition to prioritising WSUD 
implementation in these influential subcatchments, future de-
velopments in these subcatchments should also be given careful 
consideration as an increase in EIA in these locations will likely lead to 
more flooding than other locations. 

Thirteen subcatchments were of low influence under all design 
storms (priority score 0), mostly due to their marginalised location at the 
catchment boundary with irregular subcatchment shapes (i.e., smaller 
sizes) (Fig. 5). The only exception was Subcatchment S22, which had a 
standard 250 × 250m catchment area drained by a large conduit (0.75m 
in diameter) to a catchment outlet, so changes in this subcatchment did 
not have significant effects on flooding. 

It is worth noting that in our case study application, the priority 
scores and grouping were based on subcatchment influence levels only, 
i.e., their certainty levels, discussed in section 3.1, were not taken into 
account. To ensure consideration of uncertainty, subcatchments with 
fluctuating influence on catchment flooding can be given weighted 
scores in the prioritisation process. The scoring system is arbitrary 
depending on the level of risk aversion. Since there were only three 
priority groups in our case study and the majority of uncertainties 
occurred under design storms of 20% and 50%AEP which were of 
relatively low flood risk, we expected minimum changes in the sub-
catchments’ overall grouping even if each subcatchment with low cer-
tainty was given additional weights. Another aspect to consider is that if 
certain rainfall frequencies were of interest, for instance 20% and 50% 
AEP, then the priority scoring system should be modified to prioritise 
subcatchments that have higher influence levels under these rainfall 
frequencies, and those with high uncertainty in their influence levels 
should also be carefully considered. 

Fig. 5. Priority scores and priority groups of subcatchments based on their influence level under ten design storms. Blue lines represent the pipe networks. Numbers 
in subcatchments represent subcatchment IDs. Drain outlets are denoted by red dots. 
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3.3. Effect of Interactions between Subcatchments 

There was evidence of interactions between varying EIA ratio in 
different subcatchments, but this was marginal compared to the sub-
catchments’ independent influence. Quantified by EffectInt’ values, the 
effect of interaction accounted for, on average, only 0.11% of variations 
in catchment flooding across all design storms (see Appendix A6 for 
detailed EffectInt’ values). This means that a subcatchment’s overall in-
fluence on catchment flooding is predominantly caused by changes in its 
own EIA ratios, with low dependency on simultaneous changes in other 
subcatchments’ EIA ratio, thus limited effect of interactions. Such 

limited effect is likely a result of homogenous behaviour of the sub-
catchments due to catchment characteristics, subcatchment size and 
rainfall intensity. The catchment overall is steep and highly urbanised, 
so similar hydrological response across the catchment is expected. The 
typical size of subcatchments is 250 × 250m. Although this is smaller 
than the 500 × 500m subcatchment size used in Vercruysse et al. (2019), 
the inclusion of pipe networks in our study means that the inlets of 
drainage networks could easily experience surcharge because the inlets 
were originally designed to drain much smaller subcatchments. 
Furthermore, under heavy rainfalls, the runoff generated from individ-
ual subcatchments was enough to overload or reduce flooding in the 

Fig. 6. Effects of individual subcatchment’s interactions with other subcatchments quantified by EffectInt’ values. Annotation in individual cells indicates the sub-
catchment’s influence group: H for High Influence, M for Medium Influence, and L for Low Influence. Under each design storm (shown on the Y axis), darker colour 
cell means the subcatchment had relatively stronger effects of interaction than other subcatchments. 

Fig. 7. Subcatchments’ effect of interaction (EffectInt’) values under long duration rainfall of 50%AEP. Blue lines represent the pipe networks. Numbers in sub-
catchments represent subcatchment IDs. 
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pipe networks, leaving limited room for influence from other sub-
catchments. Under 1% and 5%AEP rainfalls, all subcatchments had 
similar and low EffectInt’ values (range between 0.06% and 0.14%) 
(Fig. 6). Slightly higher EffectInt’ values (range between 0.09-0.31%) 
were found under rainfalls of 50%AEP, especially under long duration 
where the strongest effect of interaction between subcatchments 
(0.31%) was observed in subcatchments drained by the large pipe net-
works (Fig. 7). This illustrates that with reduced amount of runoff under 
small rainfalls, changes in the EIA ratio of multiple subcatchments 
connected by the same drainage network could have marginally more 
compounded effects on catchment flooding. 

While our results showed stronger effects of interactions in closely 
linked subcatchments under small rainfalls than heavy rainfalls, it is 
surprising to see overall limited effects of interaction between sub-
catchments in the study area. This implies that for the study area, while 
GSA is still needed to capture non-linear responses of catchment flood-
ing to changes in different subcatchments, the subcatchments’ individ-
ual influence on flooding (indicated by FOSI) may be sufficient for 
prioritising subcatchments for WSUD implementation. Although we did 
not find significant effect of interactions in the study catchment, appli-
cation of our framework in other catchments with higher heterogeneity 
across the catchment or smaller subcatchment sizes may yield different 
results. This calls for further research applying the proposed framework 
to other catchments to gain a better understanding of the effect of in-
teractions. Should the effect of interactions be significant, then focusing 
on a cluster of subcatchments or a subpart of the drainage network 
would be necessary for achieving effective flood mitigation. 

3.4. Effectiveness of WSUD Spatial Prioritisation for Flood Mitigation 

Applying a validation approach adopted from existing studies 
(Zischg et al., 2018), our results showed that WSUD implementation 
(represented by reduction of EIA) in the high priority subcatchments 
achieved the largest percentage reduction in flood volume across all 
design storms, ranging between 3.5% to 31.3% for 1%AEP to 50%AEP 
storms (see Fig. 8 for percentage reduction in flooding and Table 1 for 
catchment total flood volume under each design storm). This demon-
strates the success of our framework using GSA in identifying effective 
locations, even with high uncertainty under small rainfalls. Imple-
mentation in medium priority subcatchments ranked second 
(3.1-21.3%) and performed slightly better than catchment-wide imple-
mentation (2.9-22.1%) under all design storms except in 50%AEP of 
long duration. Low priority subcatchments produced the least reduction 
under all rainfall scenarios (2.3-11.4%). Under rainfalls of the same 
duration, all scenarios achieved more flood reduction as rainfall fre-
quency increased. This confirms the reported effectiveness of WSUD 
implementation for flood reduction under more frequent rainfalls in 
existing literature (Myers and Pezzaniti, 2019). The differences in flood 
reduction achieved by the four scenarios also increased with rainfall 
frequency, with the biggest difference observed under long-duration 
rainfall of 50%AEP, where implementation in high priority subcatch-
ments achieved almost tripled the reduction in low priority subcatch-
ments (11.39%). This further highlights the importance of prioritising 
the most effective subcatchments, especially under frequent and small 
rainfalls. The reduced differences under rare rainfalls can be explained 
by the fact that under rare rainfalls, the entire drainage networks 

Fig. 8. Reduction in baseline catchment flood volume (Vreduction%) under four WSUD spatial distribution scenarios where WSUD were implemented (1) Catchment- 
wide, (2) in High Priority Subcatchments, (3) Medium Priority Subcatchments and (4) Low Priority Subcatchments only, under (a) short duration (90min) rainfalls, 
and (b) long duration (360min) rainfalls. For data details, see Appendix A7. 

Table 1 
Catchment Total Flood Volume (unit: 1,000,000 litre) under Each WSUD Spatial Distribution Scenario  

Duration Distribution Scenario 1%AEP 5%AEP 10%AEP 20%AEP 50%AEP 

90min Baseline (No WSUD) 126.90 72.68 51.97 37.26 15.07 
Catchment-wide 120.49 67.25 47.09 33.64 12.64 
High Priority Subcatchments 119.88 66.55 46.45 32.94 12.03 
Medium Priority Subcatchments 120.12 66.66 46.81 33.36 12.52 
Low Priority Subcatchments 121.09 67.98 48.20 34.38 13.48 

360min Baseline (No WSUD) 198.75 114.96 75.49 43.54 9.81 
Catchment-wide 192.98 111.52 71.80 41.03 8.02 
High Priority Subcatchments 192.03 110.66 70.90 40.10 7.33 
Medium Priority Subcatchments 192.72 111.34 71.62 41.02 8.24 
Low Priority Subcatchments 194.14 112.46 72.82 41.95 8.64  
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became so overloaded that there were limited differences in the effect of 
changes in subcatchments at different locations of the catchment on 
flood reduction. Our finding agrees with the reported decrease in flood 
reduction differences between different WSUD sitting strategies under 
high intensity rainfall in the work by Zeng et al. (2019). 

Under rainfalls of the same AEP, all scenarios showed higher per-
centage reduction in flood volume under short duration than long 
duration, except in the case of 50%AEP, due to the smaller amount of 
flooding generated under most short duration rainfalls (Table 1). The 
limited flooding generated under the long-duration rainfall of 50%AEP 
may help explain the exception where catchment-wide implementation 
outperformed medium priority subcatchments (Fig. 8). As discussed 
earlier, under frequent, low intensity rainfalls, catchment flooding 
became more sensitive to localised, distributed changes across the 
catchment due to more adequate drainage capacity and less significant 
impact from steep slopes, so implementation of WSUD homogenously 
across the catchment may cover more influential subcatchments to 
deliver better flood reduction than targeting medium priority sub-
catchments only. This may also explain the reported better performance 
of catchment-wide implementation than mid-stream subcatchments for 
flood volume reduction in Zeng et al. (2019)’s work. As Zeng et al. 
(2019) only simulated one “moderate intensity” design storm for the 
comparison with catchment-wide implementation, it is unknown 
whether the same conclusion could be drawn under different rainfalls. In 
contrast, our results demonstrate that the identified high and medium 
priority subcatchments achieved more reduction than catchment-wide 
implementation under nine out of ten design storms, especially in 
those of higher intensity, providing confidence in the effectiveness of 
WSUD implementation in the prioritised subcatchments for flood 
mitigation. 

As demonstrated above, our framework has been shown to be 
effective for assessing complex impact of WSUD spatial distribution on 
catchment flooding to identify priority locations. The use of changes in 
EIA ratio in subcatchments in our framework offers simplicity and 
flexibility in simulating the effect of WSUD implementation. WSUD 
planners can freely decide the range of reduction in EIA in each sub-
catchment based on subcatchment characteristics and development 
plans. In addition, assessing the effect of reduction in subcatchment EIA 
on catchment flooding provides the basis for setting a simple and 
quantifiable subcatchment-level WSUD runoff volume reduction per-
formance target for selecting WSUD options to achieve catchment-scale 
flood mitigation objectives. Our framework can be coupled with WSUD 
planning models such as UrbanBEATS to rapidly explore effective WSUD 
options and feasible locations within the prioritised subcatchments to 
help planners deliver WSUD planning for a set of water management 
targets to achieve integrated urban water management. 

However, it is worth noting that the use of reducing EIA only sim-
ulates the effect of WSUD on reducing runoff through converting 
impervious area to pervious area. Key WSUD performance factors, such 
as retention capacity limitations (Yao et al., 2020) and antecedent 
conditions including pre-burst rainfall and storage capacity (Myers and 
Pezzaniti, 2019) were not considered. Therefore, future work on un-
derstanding WSUD performance using continuous rainfall simulation 
and selecting optimal WSUD options to realise equivalent effects of 
“impervious area offset” (Zhang et al., 2020) for stormwater quantity 
management would be instrumental to ensure the robustness of the 
framework. 

Future studies should also consider beyond catchment flood volume, 
as flood mitigation is not just about reducing flood volume. Due to 
limitation on data availability, modelling capacity of SWMM and 
computation cost for running time-consuming flood models for GSA, our 
framework focuses primarily on flood volume from overflowing nodes. 
Further research modelling actual flood risk and damage, taking into 
account flood duration and velocity, would provide a more accurate 
simulation of the impact of WSUD implementation on flood mitigation. 
A weighted multi-criteria system and a cost-benefit analysis based on 

flood damage reduction can be adopted to rank and prioritise sub-
catchments for their overall influence on flood damage to identify the 
best WSUD implementation strategies. 

4. Conclusion 

To the authors’ knowledge, our proposed framework is the first 
application of WSUD spatial prioritisation for pluvial flood mitigation 
using global sensitivity analysis. Through assessing the sensitivity of 
catchment flooding to changes in effective impervious area ratio in all 
subcatchments under multiple design storms, our framework provides a 
systematic assessment of the complex impact of WSUD locations on 
catchment flood volume for the first time, enabling identification of 
WSUD implementation strategies with the best outcome for pluvial flood 
mitigation. Application of this framework to a highly urbanised, steep 
catchment in Sydney, Australia demonstrated the usefulness of the 
framework in identifying priority subcatchments: even targeting me-
dium priority subcatchments can achieve better performance than 
catchment-wide implementation under most design storms. 
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Samouei, S., Özger, M., 2020. Evaluating the performance of low impact development 
practices in urban runoff mitigation through distributed and combined 
implementation. J. Hydroinf. 22 (6), 1506–1520. https://doi.org/10.2166/ 
hydro.2020.054. 

Sarrazin, F., Pianosi, F., Wagener, T., 2016. Global sensitivity analysis of environmental 
models: convergence and validation. Environ. Modell. Softw. 79, 135–152. https:// 
doi.org/10.1016/j.envsoft.2016.02.005. 

Simperler, L., Himmelbauer, P., Ertl, T., Stoeglehner, G., 2020. Prioritization of 
stormwater management sites in urban areas. J. Environ. Manage. 265, 110507 
https://doi.org/10.1016/j.jenvman.2020.110507. 

Singh, A., Dawson, D., Trigg, M., Wright, N., 2021. A review of modelling methodologies 
for flood source area (FSA) identification. Nat. Hazards. https://doi.org/10.1007/ 
s11069-021-04672-2. 

Sitzenfrei, R., Zischg, J., Sitzmann, M., Bach, P.M., 2017. Impact of hybrid water supply 
on the centralised water system. Water 9 (11), 855. https://doi.org/10.3390/ 
w9110855. 

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu, C., 2015. Global sensitivity analysis in 
hydrological modeling: review of concepts, methods, theoretical framework, and 
applications. J. Hydrol. (Amst) 523, 739–757. https://doi.org/10.1016/j. 
jhydrol.2015.02.013. 

van De Ven, F.H.M., Snep, R.P.H., Koole, S., Brolsma, R., Van Der Brugge, R., Spijker, J., 
Vergroesen, T., 2016. Adaptation Planning Support Toolbox: measurable 
performance information based tools for co-creation of resilient, ecosystem-based 
urban plans with urban designers, decision-makers and stakeholders. Environ. Sci. 
Policy 66, 427–436. https://doi.org/10.1016/j.envsci.2016.06.010. 

Vanrolleghem, P.A., Mannina, G., Cosenza, A., Neumann, M.B., 2015. Global sensitivity 
analysis for urban water quality modelling: terminology, convergence and 
comparison of different methods. J. Hydrol. (Amst) 522, 339–352. https://doi.org/ 
10.1016/j.jhydrol.2014.12.056. 

Vercruysse, K., Dawson, D.A., Glenis, V., Bertsch, R., Wright, N., Kilsby, C., 2019. 
Developing spatial prioritization criteria for integrated urban flood management 
based on a source-to-impact flood analysis. J. Hydrol. (Amst) 578. https://doi.org/ 
10.1016/j.jhydrol.2019.124038. 

Viavattene, C., Ellis, J.B., 2013. The management of urban surface water flood risks: 
SUDS performance in flood reduction from extreme events. Water Sci. Technol. 67 
(1), 99–108. https://doi.org/10.2166/wst.2012.537. 

Walsh, C.J., Fletcher Tim, D., Ladson Anthony, R., 2009. Retention capacity: a metric to 
link stream ecology and storm-water management. J. Hydrol. Eng. 14 (4), 399–406. 
https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(399). 

Wang, A., Solomatine, D.P., 2019. Practical experience of sensitivity analysis: comparing 
six methods, on three hydrological models, with three performance criteria. Water 
11 (5), 1062. https://doi.org/10.3390/w11051062. 

Webber, J.L., Fu, G., Butler, D., 2019. Comparing cost-effectiveness of surface water 
flood management interventions in a UK catchment. J. Flood Risk Manage. 12 (S2), 
e12523. https://doi.org/10.1111/jfr3.12523. 

Williams, D., 2013. Randwick City Council - Coogee Bay Flood Study Final Report. BMT 
WBM Pty Ltd, Randwick City Council.  

Yao, L., Wu, Z., Wang, Y., Sun, S., Wei, W., Xu, Y., 2020. Does the spatial location of 
green roofs affects runoff mitigation in small urbanized catchments? J. Environ. 
Manage. 268, 110707 https://doi.org/10.1016/j.jenvman.2020.110707. 

Yin, D., Chen, Y., Jia, H., Wang, Q., Chen, Z., Xu, C., Li, Q., Wang, W., Yang, Y., Fu, G., 
Chen, A.S., 2021. Sponge city practice in China: a review of construction, 
assessment, operational and maintenance. J. Clean. Prod. 280, 124963 https://doi. 
org/10.1016/j.jclepro.2020.124963. 

Zeng, S., Guo, H., Dong, X., 2019. Understanding the synergistic effect between LID 
facility and drainage network: with a comprehensive perspective. J. Environ. 
Manage. 246, 849–859. https://doi.org/10.1016/j.jenvman.2019.06.028. 

Zhang, K., Bach, P.M., Mathios, J., Dotto, C.B.S., Deletic, A., 2020. Quantifying the 
benefits of stormwater harvesting for pollution mitigation. Water Res. 171, 115395 
https://doi.org/10.1016/j.watres.2019.115395. 

Zhang, K., Chui, T.F.M., 2018. A comprehensive review of spatial allocation of LID-BMP- 
GI practices: strategies and optimization tools. Sci. Total Environ. 621, 915–929. 
https://doi.org/10.1016/j.scitotenv.2017.11.281. 

Zischg, J., Zeisl, P., Winkler, D., Rauch, W., Sitzenfrei, R., 2018. On the sensitivity of 
geospatial low impact development locations to the centralized sewer network. 
Water Sci. Technol. 77 (7), 1851–1860. https://doi.org/10.2166/wst.2018.060. 

W. Wu et al.                                                                                                                                                                                                                                     

https://doi.org/10.1080/1573062X.2014.916314
https://doi.org/10.2166/nh.2017.245
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0010
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0010
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0010
https://doi.org/10.21105/joss.00097
https://doi.org/10.1016/j.watres.2019.115372
https://doi.org/10.1016/j.watres.2019.115372
https://doi.org/10.1098/rsta.2019.0204
https://doi.org/10.3390/w11112341
https://doi.org/10.1016/j.envsoft.2012.04.011
https://doi.org/10.1016/j.envsoft.2012.04.011
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0017
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0017
https://doi.org/10.1016/j.jhydrol.2017.05.009
https://doi.org/10.3808/jei.201700373
https://doi.org/10.3808/jei.201700373
https://doi.org/10.1016/B978-0-12-812843-5.00006-X
https://doi.org/10.1016/B978-0-12-812843-5.00006-X
https://doi.org/10.1061/jswbay.0000817
https://doi.org/10.1061/jswbay.0000817
https://doi.org/10.1016/j.envsoft.2015.03.020
https://doi.org/10.1016/j.envsoft.2015.03.020
https://doi.org/10.1111/jfr3.12467
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.3390/w13131789
https://doi.org/10.3390/w13131789
https://doi.org/10.1002/wat2.1302
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0027
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0027
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0027
https://doi.org/10.1007/s11069-010-9547-0
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1080/00401706.1999.10485594
https://doi.org/10.1080/00401706.1999.10485594
https://doi.org/10.2166/hydro.2020.054
https://doi.org/10.2166/hydro.2020.054
https://doi.org/10.1016/j.envsoft.2016.02.005
https://doi.org/10.1016/j.envsoft.2016.02.005
https://doi.org/10.1016/j.jenvman.2020.110507
https://doi.org/10.1007/s11069-021-04672-2
https://doi.org/10.1007/s11069-021-04672-2
https://doi.org/10.3390/w9110855
https://doi.org/10.3390/w9110855
https://doi.org/10.1016/j.jhydrol.2015.02.013
https://doi.org/10.1016/j.jhydrol.2015.02.013
https://doi.org/10.1016/j.envsci.2016.06.010
https://doi.org/10.1016/j.jhydrol.2014.12.056
https://doi.org/10.1016/j.jhydrol.2014.12.056
https://doi.org/10.1016/j.jhydrol.2019.124038
https://doi.org/10.1016/j.jhydrol.2019.124038
https://doi.org/10.2166/wst.2012.537
https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(399)
https://doi.org/10.3390/w11051062
https://doi.org/10.1111/jfr3.12523
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0044
http://refhub.elsevier.com/S0043-1354(23)00324-X/sbref0044
https://doi.org/10.1016/j.jenvman.2020.110707
https://doi.org/10.1016/j.jclepro.2020.124963
https://doi.org/10.1016/j.jclepro.2020.124963
https://doi.org/10.1016/j.jenvman.2019.06.028
https://doi.org/10.1016/j.watres.2019.115395
https://doi.org/10.1016/j.scitotenv.2017.11.281
https://doi.org/10.2166/wst.2018.060

	Water Sensitive Urban Design (WSUD) Spatial Prioritisation through Global Sensitivity Analysis for Effective Urban Pluvial  ...
	1 Introduction
	2 Methodology
	2.1 Proposed WSUD Spatial Prioritisation Framework
	M1 Flood Model Set-up
	M1.1 Subcatchment Delineation
	M1.2 SWMM Model Preparation

	M2 Sensitivity Analysis
	M2.1 Sensitivity Analysis Model Set-up
	M2.2 Subcatchment Rank-based Grouping
	M2.3 Convergence Test

	M3 Subcatchment Prioritisation
	M3.1 Subcatchments Influence and Certainty Levels Categorisation
	M3.2 Subcatchments Interaction Assessment
	M3.3 Final Priority Grouping

	M4 Validation of Spatial Prioritisation’s Effectiveness for Flood Mitigation

	2.2 Case study application

	3 Results and Discussion
	3.1 Subcatchments Influence and Certainty Levels under Different Rainfalls
	3.2 Subcatchment Prioritisation
	3.3 Effect of Interactions between Subcatchments
	3.4 Effectiveness of WSUD Spatial Prioritisation for Flood Mitigation

	4 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Supplementary materials
	References


