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Abstract

This paper illustrates the vulnerability of local energy trading to false data injection attacks in a smart residential microgrid and demonstrates
the impact of such attacks on the financial benefits earned by the participants. In a local energy market, the attacker can overhear the energy
generation and consumption patterns of legitimate participants and based on this, optimize its attack signal to achieve maximum benefits either as
a buyer/seller, while balancing the supply–demand to remain undetected. For such a system, we have formulated an optimization problem at the
attacker, to extract the maximum possible benefits from legitimate participants. The numerical results show that the false data injection from the
attacker causes significant losses in the benefits of legitimate participants, up to a reduction of 94% in certain hours.
c⃝ 2018 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The increasing penetration of renewable energy resources in
power systems along with the urge for achieving better power
quality in a reliable manner have resulted into widespread
deployment of distributed generation technologies. Moreover,
the traditional power grid is transforming from its complex
and intricate nature towards systems embedded with intelligent
control and communication. In this respect, the concept of a
smart microgrid has attracted significant interest, especially
in remote communities. To harness the maximum benefits of
intermittent renewable energy generation, local energy trading
among households in a residential microgrid has evolved as a
highly effective approach [1].

In a residential microgrid, different houses may have dif-
ferent demand profiles and different capacities for renewable
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generation and storages. Moreover, the intermittency of re-
newable generation technologies can lead to energy surplus in
some houses, while energy deficit in some other houses. Thus,
the houses with surplus can sell the excess energy to houses
with deficit, which is termed as local energy trading. However,
the effectiveness of local energy trading critically depends on
the availability of energy consumption/generation information,
as well as the reliability of energy trading signals [2]. This
becomes increasingly important with the adoption of internet
of things (IoT) technologies for energy management in smart
grids [3].

A number of existing studies have outlined the vulnerabili-
ties of smart grid systems from cyber security threats, especially
arising from proprietary communication protocols whose secu-
rity can be breached [4]. The security objectives for different
smart grid applications have been identified and to fulfill these
objectives, privacy preserving authentication frameworks based
on group keys are introduced in [5]. The authors in [6] have
outlined a number of privacy preserving schemes for a range of
applications in smart grid including data aggregation and smart
home gateways.
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Apart from authentication and access control mechanisms,
different studies have considered intrusion detection techniques
to mitigate the impact of attacks from compromised devices [7].
The authors in [8] have proposed a distributed intrusion detec-
tion technique for SCADA systems and evaluated the technique
using hybrid testbed for electrical distribution network. On
the other hand, [9] introduces Hidden Markov Model-based
intrusion detection for SCADA systems for a range of attack
vectors.

The aforementioned works have not investigated the impact
of such security threats on local energy trading applications
in a smart microgrid. The existing studies on local energy
trading consider issues like false bids placed by legitimate
participants or impersonation attacks, eavesdropping and denial
of service attacks [10]. To mitigate such threats, the authors
in [11] adopt privacy preserving encryption schemes. However,
such schemes may not secure the local energy market from false
data injection, which can cause significant financial losses.

In a local energy market, trusted third parties may act as
an attacker and cause loss of benefits for the legitimate par-
ticipants, whereas harnessing benefits for itself. In this respect,
there has not been any investigation in the literature on how
the attacker can optimally design attack signal to extract the
maximum benefits from legitimate participants in the local
energy market. To address the problem, we have made the
following contributions in this paper:

• We have investigated the optimum attack signal design
to extract the maximum benefits from legitimate partici-
pants while minimizing the supply–demand mismatch to
ensure that the attack remains undetected.

• We have shown that in the absence of an attacker,
the households participating in local energy trading
can earn significant profits/savings, especially when a
house has energy excess(deficit) and other houses are in
deficit(excess).

• We have demonstrated that in the presence of an attacker,
the profits/savings at the legitimate participants have
significantly decreased, up to 94% at certain hours.

The rest of the paper is organized in the following manner.
Section 2 describes the system model. Section 3 details the
problem formulation for optimum attack generation. Section 4
demonstrates the numerical simulation results obtained for the
problem under consideration. Finally, Section 5 outlines the
concluding remarks.

2. System model

A residential microgrid, comprised of L number of house-
holds equipped with solar panels, battery energy storage sys-
tems (BESSs) and HEMSs is considered. Due to intermittent
renewable energy generation, there might be energy excess or
energy deficit at different households. These energy mismatch
values will be reported by HEMSs to the central EMS. It is
assumed that there are C EMSs in the microgrid and each
EMS monitors the energy generation and consumption of Lc

households. Based on these, the EMS manages the energy

trading operation among the monitored households with non-
zero energy mismatch.

Each EMS is indexed by c ∈ [1, C] and each household
monitored by the cth EMS is denoted by ℓc ∈ [1, Lc]. The
amount of solar energy generated at the ℓth

c household, the
stored energy and the energy consumption are given by Gℓc , Sℓc

and Dℓc , respectively. The storage capacity and the minimum
stored energy are Smax and Smin , respectively. We assume that
among the Lc households, Le and Ld households have energy
excess and energy deficit, respectively. The households with
energy excess and energy deficit are denoted by ℓe and ℓd ,
respectively where Gℓe > Dℓe , Sℓe = Smax and Gℓd < Dℓd ,
Sℓd < Smax .

The HEMS in each household computes the energy mis-
match and forwards to the central EMS, if the mismatch is non-
zero. The EMS then optimizes the energy trading operation by
computing the optimum amount of energy to be sold/purchased.
It also computes the prices for each seller to enable the house-
hold to recover a portion of the investment cost for solar panels
and BESSs. We assume that the amount of energy sold by the
ℓth

e seller from its excess renewable generation and the amount
of energy purchased by the ℓth

d buyer to meet its load demand
are denoted by xℓe and xℓd , respectively.

The energy discharged from the ℓth
e BESS is β(S′

ℓe
− Sℓe )

and the amount of energy charged to the ℓth
d BESS is

Sℓd −S′
ℓd

α
,

where S′ and S denote the storage before and after charg-
ing/discharging, α and β are the charging and discharging
efficiencies, respectively. The price at which ℓth

e household
sells energy is pℓe . The capital investment cost for solar panel
and BESS installation at the ℓth

e household is Cℓe . The energy
sell/purchase and pricing information are forwarded to the
HEMSs and based on this, the households initiate energy
trading operation.

The effectiveness of such energy trading operation often
relies on the robustness and integrity of the information ex-
change between the HEMSs and the EMS. We assume that
the smart grid communication for energy and pricing infor-
mation exchange takes place through wireless communication
technologies. Wireless technologies offer better flexibility and
improved scalability, however, there are limitations in terms of
security and privacy. The energy mismatch information can be
easily eavesdropped by third parties and this information can
be utilized to predict the decisions that will be made by the
corresponding EMS.

To illustrate this, let us consider an example case. The
EMS is receiving the energy mismatch information from 4
households. Households 1 and 2 have excess generation of 100
W and 300 W, respectively. On the other hand, households 3
and 4 have an energy deficit of 200 W and 500 W, respectively.
With optimum energy trading, household 1 can sell 100 W to
household 3 and household 2 can sell 300 W to household 4.
And the remaining energy deficit at households 3 and 4 will
be purchased from the utility grid. Now, in the presence of an
attacker, if the false injection to households 1 (3) and 2 (4) is
−100 W and −300 W, respectively, the sellers will not be able
to sell in the residential microgrid and cannot receive more than
the feed-in tariff. On the other hand, the buyers will have to
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purchase energy from the utility grid at a higher utility rate.
Thus, there will be loss of profit/savings for the households.

In this paper, we consider that the attacker is the nearby
EMS which has either excess generation or energy deficit in
all the connected households at the same time. The combined
generation and combined demand of all houses under the
attacker EMS is Ga and Da , respectively. The total amount of
stored energy is Sa . When the attacker EMS has excess energy
(i.e., Ga > Da and Sa = La Smax ), it can sell this energy to
the households in energy deficit under the cth EMS at a rate
greater than the feed-in tariff, that it would receive otherwise.
Similarly, when the attacker has energy deficit (i.e., Ga < Da or
Sa < La Smax ), it can purchase this energy from the households
in energy excess under the cth EMS at a rate smaller than the
utility rate and thus, get the benefit of cheaper energy. The
amount of energy sold or purchased by the attacker EMS is
denoted by xa,e and xa,d , respectively. The system model under
consideration is illustrated in Fig. 1.

The attacker EMS intends to design the attack signal in such
a way that its benefits as a seller/buyer are maximized. The
false values injected with the signal designated for the ℓth

e seller
or ℓth

d buyer are denoted by δa,ℓe and δa,ℓd , respectively. These
attack signals are optimized in such a manner that the amount of
energy sold/purchased from the houses under the attacker EMS
is maximized, while meeting the operational constraints.

3. Optimum attack signal generation

The attacker solves the optimization problem in (1) to obtain
the false injection attack signals.

min
xℓe ,xℓd ,δa,ℓe ,δa,ℓd

Le∑
ℓe=1

Ld∑
ℓd=1

|(xℓeβ(S′
ℓe − Sℓe ) + δa,ℓe )

− (xℓd +
Sℓd − S′

ℓd

α
+ δa,ℓd )| (1)

xℓe ≤ |Gℓe − Dℓe | ∀ℓe ∈ [1, Le] (2)

xℓd ≤ |Dℓd − Gℓd | ∀ℓd ∈ [1, Ld ] (3)

Smin ≤ Sℓe , Sℓd ≤ Smax ∀ℓe ∈ [1, Le],

ℓd ∈ [1, Ld ] (4)

xℓe , xℓd ≥ 0 ∀ℓe ∈ [1, Le], ℓd ∈ [1, Ld ] (5)

δa,ℓe , δa,ℓd ≤ 0 ∀ℓe ∈ [1, Le],

ℓd ∈ [1, Ld ] (6)

δa,ℓe ≥ − min((Gℓe − Dℓe ), uℓe |Ga − Da|)

∀ℓe ∈ [1, Le] (7)

δa,ℓd ≥ − min((Dℓd − Gℓd ), uℓd |Ga − Da|)

∀ℓd ∈ [1, Ld ] (8)

pℓe (Gℓe − Dℓe ) ≥ mℓe Cℓe ∀ℓe ∈ [1, Le] (9)

pfeed-in ≤ pℓe ≤ putil ∀ℓe ∈ [1, Le], (10)

Here, the objective function in (1) minimizes the mismatch
between energy sell and purchase to obtain the supply/demand
balance in the energy market. The constraints (2) and (3) limit
the energy sell and purchase values within the energy excess
and energy deficit values at the households. The constraint (4)

limits the stored energy between the minimum storage level
and the maximum storage capacity. The constraints (5) and (6)
ensure that the legitimate energy sell/purchase values are non-
negative and the injections from the attacker are non-positive
(so that the energy sell/purchase in the legitimate EMS is
minimized).

The constraint (7) ((8)) limits the false data injection values
to the minimum between the energy excess (deficit) value at
the households under the legitimate EMS and the portion of the
net energy excess (deficit) at the households under the attacker
EMS, that the attacker EMS is willing to provide (extract) to
(from) the households under the legitimate EMS. Here uℓe =

Gℓe −Dℓe∑Le
ℓe=1(Gℓe −Dℓe )

and uℓd =
Gℓd −Dℓd∑Ld

ℓd =1(Gℓd −Dℓd )
are chosen in such a

way that the supply/demand balance at the attacker EMS can
be achieved by selling/purchasing in proportion to the energy
excess and deficit values at the households under the legitimate
EMS.

The constraint (9) allows to set the pricing for the legitimate
sellers in such a way that the profit earned from excess energy
in the residential microgrid can recover m

100 % of the investment
cost at the sellers. The constraint (10) ensures that the legitimate
sellers receive a rate more than the feed-in tariff pfeed-in and less
than the utility rate putil to make local energy trading attractive
to the prospective sellers/buyers.

4. Numerical results

We consider a residential microgrid with L = 4 households,
equipped with 1 kW, 3 kW, 2 kW, and 1 kW solar panels,
respectively. Households 2 and 3 are connected to 1 kW BESS,
whereas, households 1 and 2 are not equipped with BESSs.1

The attacker EMS is also connected with 4 households with
similar sizes for solar panels and BESSs. The feed-in tariff
and utility rate are considered to be 11 cents/kWh and 30
cents/kWh, respectively. The charging and discharging efficien-
cies are 0.7. The capital investment costs for the 4 households
are $1000, $4000, $3000, and $1000, respectively.

Fig. 2 shows the energy mismatch for each of the households
under the legitimate EMS at different hours of the day. The
positive values indicate that the households have energy deficit
and the negative values indicate energy excess. The time axis
represents 12 : 00 AM to 11 : 00 PM (hours 1 to 24 in the
figure). It can be noted that before 10 : 00 AM, all houses
have energy deficit, whereas, from 10 : 00 AM to 7 : 00 PM,
most houses have energy excess (due to excess renewable gen-
eration). Households 2 and 3 have significant energy mismatch
during 12 : 00 AM to 1 : 00 AM and 10 : 00 PM to 11 : 00 PM,
as they are charging up the BESSs during these off-peak hours
and no renewable generation is available at this time.

Fig. 3 shows the benefits achieved by the different houses
in terms of profits (earned by sellers) and in terms of savings
(made by buyers) when no attacker is present. The figure only
shows the profits/savings from 10 : 00 AM to 7 : 00 PM, as

1 The renewable power generation profiles and the load demand profiles are
collected from http://pv-map.apvi.org.au and https://data.gov.au/dataset/electri
city-consumption-benchmarks/resource, respectively.
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Fig. 1. System model for local energy trading in the presence of attacker, where the attacker overhears the energy consumption signals and injects false message,
accordingly.

Fig. 2. Energy mismatch in the 4 households over the day.

the number of buyers and sellers are non-zero only during this
time period. It can be seen that the households can obtain a
profit/savings up to 10.38, 22, 21.5 and 2.5 cents in households
1, 2, 3 and 4 during certain hours. Households 2 and 3 have
earned more benefits as they have battery storages, which they
can utilize when more houses are in energy deficit. Household
4 earns small amount of profits/savings because it has small
amount of mismatch compared to other houses.

Fig. 4 shows the profit/savings achieved by the houses in the
presence of an attacker, as well as the profit/savings achieved
by the attacker EMS. From this figure, we can see that the
attacker EMS gains profits/savings from excess/deficit energy

Fig. 3. Profits or savings at different households from local energy trading
without attack.

in the households under the legitimate EMS. The profits/savings
at the attacker EMS can be as high as 24 cents at certain hours.
The maximum loss of profits/savings at house 1, house 2, house
3 and house 4 are 94%, 86%, 93% and 86% at 4 : 00 PM, at
5 : 00 PM, at 5 : 00 PM and at 4 : 00 PM, respectively.

5. Conclusion

In this paper, we have investigated the impact of false data
injections from the attacker EMS, when the attack signal is
optimized to extract maximum possible benefits from legitimate
participants, while maintaining supply–demand balance in the
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Fig. 4. Profits or savings at different households from local energy trading
without attack.

local energy market. We have compared the earnings/savings
from local energy trading at different houses with and without
the presence of an attacker. The results show that local energy
trading can result into significant benefits, especially for houses
with BESSs. However, when the attacker EMS injects the
optimized false signal, the profits/savings at the legitimate
houses drop significantly, which illustrates the vulnerability
of such systems to false data injections. Future works will
focus on the inclusion of power network constraints, constraints
from financial agreements in the local energy market, and
the impact of communication impairments at the attacker and
legitimate participants, as well as the mitigation technique for
false injection attack.
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