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Abstract—A high-efficiency rigorous approach for the solution of
the two-dimensional Laplace equation with Dirichlet’s boundary
conditions is developed to tackle electrostatic problems involving
metallic cylinders of arbitrarily cross-sections. In this paper, we
demonstrate how this novel algorithm can be used to address the
problems arising in the capacitance microscopy to provide a higher
resolution in studies of micro-cavities and whiskers on the surface of
metallic samples. The precise capacitance images of the probe/sample
systems are presented.

1. INTRODUCTION

Scanning capacitance microscopy (SCM) is mostly associated with
a technique of imaging dopant variations in semiconductor devices
(see, for example [1]). SCM is often used to measure implant
profiles. Another SCM application is the low-frequency microscopy
measurements based on capacitance scanning, used to determine
variations in thin, dielectric films with resolution up to 1 nm in
thickness and 200 nm laterally [2]. This technique may be used on
metallic substrates as well as semiconducting substrates. Omitting the
technical details, SCM can be described as a microscopy technique
using a narrow probe electrode held just above the surface of a sample
to scan the capacitance values across the sample. SCM characterizes
the surface of the sample by the change in the electrostatic capacitance
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between the surface and the probe and is a useful tool to reconstruct
the surface topography of a rough metallic sample based on its
capacitance image (dependence of capacitance of the system on a
relative angular probe/sample position). Recent developments in the
field are described, for example, in [3–6]. Various algorithms have been
developed to allow efficient capacitance calculations [7–10]. However,
purely numerical algorithms are usually very time consuming and
most of them do not provide a guarantee of convergence as the grid
size is refined. Analytical algorithms, on the other hand, are usually
only capable of providing solutions for a limited number of idealized
structures (see, for example [11, 12]).

Therefore, there is a need for a fast and reliable algorithm
for calculating capacitance of the systems where high pre-specified
accuracy is required. Our algorithm we developed to address this issue
is based on method of analytical regularization (MAR). This method
has previously been applied successfully in [13, 14] to the integral
equations associated with potential and wave scattering problems
involving single conductors of the canonical shape (with circular,
elliptic or rectangular cross-section). The main idea of MAR is in
transforming Fredholm integral equations of the first kind into the
well-conditioned and fast converging Fredholm equations of the second
kind in a matrix formulation.

In this paper, the above approach is generalized for boundary
value problems in potential theory associated with the assembly of
arbitrarily profiled charged cylinders. The main steps of the solution
of the integral equations for the unknown charge density functions
obtained from Laplace’s equation are:

• splitting the kernel of an integral equation into a suitable singular
part and a smooth remainder;

• implicit analytical inversion of the singular part;
• expansion of the remaining continuously differentiable functions

into Fourier series;
• rescaling of the matrix coefficients to obtain Fredholm equations

of the second kind.

The existence of the Fredholm alternative for such equations
guarantees that the solution of the truncated system of the Fredholm
equations of the second kind converges to a solution of the infinite
system. The accuracy of the solution will only depend on truncation
number and can thus be pre-specified. The details of the method are
discussed in Section 2. The second major advantage of our developed
algorithm is the short computational time achieved by using the fast
Fourier transform for computation of the matrix elements.
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The possible applications of our algorithm are not limited by
SCM. The method is suitable for solving 2-D electrostatic problems
for multiple conductors with no restrictions on system geometry except
for the requirement of smooth parameterization of the contours. Such
flexibility allows this algorithm to be applied to various problems
such as TEM-mode analysis in the different types of homogeneous
transmission lines, studies of finite gratings and an ensemble of
the conductors above the grounded plane, and advanced analysis
of the electrostatic potential distribution in the quadrupole mass-
spectrometer. In this paper, we use the flexibility and reliability
of our developed method to calculate the capacitance image of the
metallic samples, a direct problem associated with SCM. The SCM
operation, however, seems to be one of most suitable among many
possible applications of our algorithm since it deals with charged
conductors/samples of arbitrarily shape and, in addition, the 2D-space
electric field may be computed, as mentioned above, with any desired
degree of accuracy.

The paper is organized as follows. In Section 2, the mathematical
background of the method is described. This approach reduces
the initial problem to coupled infinite systems of linear algebraic
equations of the second kind. The Fredholm’s nature (compactness)
of operators in each of the coupled systems provides fast convergence
of the truncated finite systems to the exact solution; the accuracy of
computations strictly depends on truncation number. With a proper
choice of truncation number the calculations may be carried out with
any prescribed accuracy.

In Section 3, we employ the geometry of the 2-D capacitance
microscope described in [7] for numerical calculations. Initially, as
a mean of verification, we consider the elliptic cylinder positioned in
the centre of the shield or elevated. Next we use three geometries:
rectangular cylinder, four-ray star-shaped cylinder and periodically
perforated (“rough”) circular cylinder. The capacitance images of all
samples are discussed.

In Conclusions, we resume the obtained results and discuss a
possibility of further generalization of the method.

2. THEORETICAL BACKGROUND

The method described in this paper may be classified as an analytical-
numerical method with generic features of reliability and stability, in
contrast to the purely numerical techniques, where it is not possible to
guarantee convergence or accuracy when some parameter, such as grid
size is increasingly refined. Our algorithm is based on the method of
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analytical regularization; details of this method applied to scattering
problems for canonical structures are presented in [13, 14].

Generally, our algorithm is developed to tackle the problems with
N − 1 arbitrarily profiled charged PEC cylinders embedded into a
homogeneous dielectric medium with relative permittivity ε, where N
is a positive integer exceeding 1. To ensure that the two-dimensional
electrostatic potential problem is physically reasonable we consider a
case when a finite dielectric medium is bounded by an infinitesimally
thin grounded cylindrical shell. This problem is fully described by
the Dirichlet boundary value problem for Laplace’s equation for the
electrostatic potential U ,

∆U = 0 (1)

with boundary conditions for the potentials given at the surface
boundary Ln (n = 1, . . . , N) of each of the N cylinders:

U |Ln = Vn, n = 1, . . . , N, (2)

where VN = 0 for a system with a grounded shield enclosing
all other cylinders. To employ the regularization procedure all
contours, Ln must be smooth and non-self crossing with a continuous
parameterization that is twice differentiable at each point of Ln.

As all conductors are arbitrarily-shaped the classical separation
of variables method is not applicable here. We use a more general
approach based on an integral representation. Using the superposition
principle we seek a solution for the total field potential U as the sum
of the single-layer potentials contributed by each cylinder,

U(q) =
N∑

j=1

∫

Lj

G(|p− q|)Zj(p)dLp. (3)

Here
Z(p) =

dU

dn
(p)

where d/dn(p) denotes a normal derivative at the point p. Z(p) is
related to the linear charge distribution Q(p) on the contour L by
Q = εZ/4π (where ε is a permittivity).

Kernel G of the integral Equation (3) is the two-dimensional free
space Green’s function,

G = − 1
2π

log(|p− q|), (4)

where |p − q| is the distance between points p and q normalized by
a largest cylinder radius Rchar. Applying boundary conditions to
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Equation (3) we obtain the coupled system of integral equations for
the unknowns Zj :

N∑

j=1

∫

Lj

Gij(|p− q|)Zj(p)dLp = Vs(q), s = 1, . . . , N (5)

where Vs is the potential given on the n-th boundary.
Equation (5) represents first kind Fredholm integral equations that

are generally ill-posed. Our algorithm is designed to transform these
initial equations into second kind Fredholm equations by analytical
means. Numerical truncation methods can then be effectively applied.

First, we need to parametrize each contour Ln,

ηs(θ) ≡ (xs(θ), ys(θ)) , (s = 1, . . . , N), θ ∈ [−π, π]

and introduce some new notations

zj = lj(θ)Zj (ηj(θ)) , lj(θ) =
{[

x′j(θ)
]2 +

[
y′j(θ)

]2
}1/2

(6)

where xn(θ), yn(θ) are coordinates of some point q at the contour Ln,
and ln(θ) is an arc length at the point q. We thus obtain the system
of N integral equations:

N∑

j=1

π∫

−π

G (Rsj(θ, τ)) zj(τ)dτ = Vs(θ), s = 1, . . . , N (7)

where Rsj(θ, τ) denotes the distance between some point θ on the s-th
boundary and a point τ on the j-th boundary.

Providing that s 6= j, the points corresponding to θ and τ
belong to the different contours so that Rsj(θ, τ) 6= 0 everywhere
and the kernel containing G(Rsj(θ, τ)) is nonsingular; hence, the
corresponding integral terms do not contain singularities. For
Gss(θ, τ) the corresponding integral term contains a singularity of the
logarithmic type at the points θ = τ . In this case, we analytically split
the Green’s function into a singular part and a regular part Lsj that
does not contain any singularity:

−2πG(Rsj(θ, τ))

= log(Rsj(θ, τ)) = Lsj(θ, τ), s 6= j,

−2πG(Rsj(θ, τ))

= log(Rsj(θ, τ) = Lsj(θ, τ) + log
(

2 sin
∣∣∣∣
θ − τ

2

∣∣∣∣
)

, s = j, (8)
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or equivalently,

Lsj(θ, τ) = log (Rsj(θ, τ)) , s 6= j,

Lsj(θ, τ) = log (Rsj(θ, τ))− log
(

2 sin
∣∣∣∣
θ − τ

2

∣∣∣∣
)

, s = j. (9)

The function Lsj , s = j is a regular function, defined everywhere except
at the points θ = τ ; the function Lsj , s 6= j is defined everywhere. The
exact expression for Lsj , s = j at the points of singularity where θ = τ
was obtained analytically:

Lsj(θ, τ) = log (ls(θ)) . (10)

We can now extend the definition of the function Lsj , s = j everywhere
by the formula:

Lsj =
{

log (Rsj(θ, τ))− log
(
2 sin

∣∣ θ−τ
2

∣∣) , θ 6= τ,
log (ls(θ)) θ = τ.

(11)

This function is continuously differentiable with respect to τ .
We apply a Fourier expansion for the singular part of the Green’s

function:

log
(

2 sin
∣∣∣∣
θ − τ |

2

∣∣∣∣
)

=
1
2

∞∑
n=−∞

n6=0

ein(θ−τ)

|n| . (12)

As the function Lsj is regular, we can expand it into a double Fourier
series:

Lsj(θ, τ) =
∞∑

n=−∞

∞∑
m=−∞

lsjnmei(nθ+mτ). (13)

In a general case, where Vm is a function depending on a position
of the point θ on the m-th boundary, we expand it and the unknown
function zj into a Fourier series numerically:

−2Vm(θ) =
∞∑

s=−∞
νm

s eisθ. (14)

zj(τ) =
∞∑

n=−∞
ξj
neinτ . (15)

After substitution of expansions (12)–(15) into (7) we arrive at the
system of N integral equations:

∞∑
s=−∞

s6=0

ξm
s

|s| e
isθ − 2

N∑

n=1

∞∑

j=−∞
eijθ

∞∑
p=−∞

ξn
p lm,n

j,−p =
∞∑

s=−∞
νm

s eisθ, (16)
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where m = 1, . . . , N and θ ∈ [−π, π]. Using orthogonal properties
and completeness of the system of functions

{
einφ

}n=∞
n=−∞ we obtain an

infinite system of algebraic equations, still of the first kind. Now to
ensure that matrix coefficients in the resulting system converge with
the same rate of convergence and fast enough for the system to be of a
second kind we rescale the unknown Fourier coefficients of the charge
density function ξs

n as:

ξ̃s
n =

ξs
n

σn
,

where σn = |n|1/2, when n 6= 0 and σ0 = 1. We obtain the following
result:

ξ̃s
n(1− δn0) +

N∑

j=1

∞∑
m=−∞

σnσmlsjn,−mξ̃j
m = σnνs

n, (17)

n = 0, ±1, ±2, . . . ; s = 1, 2, . . . , N.

It can be shown that the coefficients of the left-hand side matrix
in (17) are square summable and the matrix operator is compact
and the system is of a second kind. Thus, the infinite system can
be effectively solved by a truncation method. The solution of the
truncated system rapidly converges to the exact solution. The above
solution automatically incorporates the mutual interaction of all N
charged cylinders, allowing accurate calculation of the line charge
densities on the boundaries and the field potentials at any point of
the space between the conductors.

Due to its theoretical properties the infinite system (17) can be
effectively solved for ξ̃j

m. The linear charge density functions Z are then
easily restored from their Fourier coefficients and are used to calculate
the capacitance of the system.

3. NUMERICAL RESULTS

The numerical code was validated by comparing obtained results with
known analytical solutions for the coaxial line with a centred inner
conductor [15] and the coaxial line with a shifted inner conductor [16].
Obtained results entirely coincide with the published solutions starting
with Ntr = 16 for the centred inner conductor and Ntr = 128 for
the inner conductor located close to the shield. It is worth noting
that our results are much more accurate than values obtained by the
purely numerical method presented in [7]. Their algorithm provides the
capacitance value in the centered inner conductor case that is accurate
only to two decimal places.
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Centered cylinders

Closely spaced cylinders

Figure 1. A sample structure for calculation of truncation error.

The efficiency of our algorithm is further demonstrated by
computing relative error and condition number dependence on
truncation number (Fig. 2) for the structure consisting of an elliptical
cylinder with minor and major semi-axes 0.1 and 0.2 correspondingly.
The cylinder is placed inside the inner shield of a circular cross-section
with radius 1. Two positions of the inner cylinder are considered
(Fig. 1): centered (black line) and almost touching the shield (red
line). In the numerical code the number of points, used to parameterize
each object is set to be equal to the truncation number. For this
reason in the case of closely spaced conductors more equations need to
be solved (this corresponds to a higher truncation number and more
precise parametrization of the curves) to obtain a specific accuracy as
can be observed in Fig. 2(a). However, any accuracy can be achieved
and solutions are very stable, as demonstrated by condition numbers
of the solution matrix in Fig. 2(b).

In our further calculations, we employ the geometry of the 2-D
capacitance microscope with a structure similar to the one described
in [7]. A scheme of the cross-section of the probe with an object of
irregular geometry is shown in Fig. 3. The cross-section of the probe
is basically circular, except for the insertion of a small wedge-shaped
piece. The wedge-shaped tip is placed at different angular positions
(φp) relative to the object to obtain the image. At each relative
position of the probe and the object we determine the capacitance
per unit length as a function of φp. In our calculations we used
Ntr = 256 and 200 steps for each capacitance image. The fast
Fourier transform was applied to compute the coefficients in the final
matrix equation, resulting in fast calculations. Calculation of each
capacitance image took around 6 minutes on a standard computer,
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Figure 2. Relative error and condition number versus truncation
number.
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Figure 3. Schematic representa-
tion of the system probe-object.
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Figure 4. Schematic view of the
system with a fixed probe and
elevated and rotating sample.

corresponding to less 2 to seconds for each problem involving a single
relative object/probe position. The computational time depends on
the number of equations solved, and increases with the required
accuracy (and thus the truncation number) and with a number of
conductors in the system (for the applications other than SCM).

Here a super ellipse Equation (18) is used to parameterize a
sample inside the shield and a special parametrization was developed
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to describe shield with the probe.

ρ(φ) =

([∣∣∣∣
1
a

cos
(
φ

m

4

)∣∣∣∣
n2

+
∣∣∣∣
1
b

sin
(
φ

m

4

)∣∣∣∣
n3

]1/n1
)−1

. (18)

In this equation, a and b are the figure size parameters normalized by
a biggest cylinder radius Rchar, n1, n2, n3 define corner sharpness and
m represents the symmetry. This formula allows us to model a great
variety of smooth shapes such as an ellipse (n = n1 = n2 = n3 = 2,
m = 4), a rectangle with rounded-off corners (n = n1 = n2 = n3 > 2,
m = 4), a star with the smooth rays (n1 = 2; n2 = n3 > 2, m is equal
to the number of rays) and many others.

The wedge-shaped tip on the cylindrical shield (Fig. 3) is
parameterized by the two straight lines joined by a part of the circle.
The lines are connected to the shield with the similar quarters of
the circle. The geometry of the tip is described by the following
parameters: l0 is its length, r0 denotes a radius of the cylindrical closure
between the straight lines, φ0 is the angular measure of such wedge (see
Fig. 3). The sensitivity of this method depends on the sharpness of
the tip, so we set the angle between the straight lines to be φ0 = π/30.
Other geometrical parameters are l0 = R/3, r0 = R/48, where R
is a radius of the shield. If the object is described by some planar
parametric curve ρ(φ) with maximum radius R0 = max(ρ(φ)), we
should require the fulfillment of the condition ∆ = R−R0−l0−r0 > 0,
where ∆ is a minimum gap between the object and the wedge-shaped
tip. When object’s maximum size R0 is small compared to the radius
of the probe (R0 ¿ R), it is reasonable to elevate the object from the
centre position up to the tip as shown in Fig. 4.

In this case, the only way to preserve a high scanning resolution
is to substitute the rotation of the probe by the rotation of the object
itself. This rotation is described by the azimuthal angle φ′.

To test the sensitivity of the probe in the scanning mode (a sample
is centred at the origin) and in the “elevated” mode (the sample is
elevated to h) we choose an elliptic cylinder as the sample. Setting
R = 1, let us define the major semi-axis of the ellipse b = 0.35 and the
aspect ratio a/b = 1/4, where a is the minor semi-axis of the ellipse.
The effect of the height of elevation is examined at three successive
values: h = 0 (SCM), and h = 0.25, 0.28 (elevated and rotated
sample). When h = 0.25, the minimum gap between the wedge-shaped
tip and the ellipse is ∆ = 0.067; when h = 0.28, ∆ = 0.037. The graphs
of the dimensionless capacitance C = Cabs/(ε0Rchar) dependence on
the rotation angle are shown in Fig. 5.

For the centred sample the dependence C(φ) (black line) is almost
a constant, just slightly exceeding the average level of the capacitance
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Figure 5. Capacitance versus
rotation angle. Sample is the
elliptical cylinder with the aspect
ratio a/b = 1/4. Elevation height:
h = 0 (black); h = 0.25 (blue);
h = 0.28 (red).

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 6. Normalized rela-
tive capacitance function Crel(φ):
sample is an elliptical cylinder
with the aspect ratio a/b = 1/4
(b = 0.35); h = 0.
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Figure 7. Normalized rela-
tive capacitance function Crel(φ′):
sample is an elliptical cylinder
with the aspect ratio a/b = 1/4
(b = 0.35); h = 0.25.

Figure 8. Sample: rectangular
cylinder with the sides 0.175 ×
0.35.
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when the sample passes the tip at the minimum distance ∆ = 0.037
(φ = 90◦, 270◦). The minimum capacitance corresponds to the
maximum gap ∆ = 0.580 (φ = 0◦, 180◦). The elevation of the sample
(blue and red lines) leads to the lessening of the gap and hence to the
increase of the capacitance changes.

Scanning the sample by the rotating probe (h = 0) or rotating the
sample (0 < h < R−R0− l− r0) we obtain the dependence C(φ). It is
also useful to analyse the normalized relative capacitance behaviour,
which we define as

Crel =
max (C(φ))− C(φ)

max (C(φ))

We plot Crel(φ) for the two cases: 1) the elliptic sample is positioned
at the centre of the probe (h = 0, Fig. 6); 2) elliptic sample is elevated
(h = 0.25, Fig. 7).

The capacitance graph (Fig. 5) gives very rough estimation of the
object shape, while normalized capacitance behaviour (Figs. 6 and 7)
emphasizes a number of protuberances.

Along with the ellipse, we consider three more complicated
geometries of the sample: a) rectangular cylinder with the
sides 0.175 × 0.35 (Fig. 8); b) four-ray star-shaped cylinder
(Fig. 12, a = b = 0.62, n1 = 2, n2 = n3 = 13, m =
4); c) “rough” or periodically perforated cylinder (Fig. 16,
a = b = 0.32, n1 = 2, n2 = n3 = 2.2, m = 20).
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Figure 9. Capacitance versus
rotation angle of the rectangle.
Elevation height: h = 0 (black);
h = 0.2 (blue); h = 0.24 (red).

  0.01

  0.02

  0.03

30

210

60

240

90

270

120

300

150

330

180 0

Figure 10. Normalized relative
capacitance function Crel(φp) of
the rectangle cylinder, h = 0.
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Figure 11. Normalized relative
capacitance function Crel(φ′) of
the rectangle cylinder, h = 0.24.

Figure 12. Sample: four-ray
star-shaped cylinder (a = b =
0.62, n1 = 2, n2 = n3 = 13, m =
4).
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Figure 13. Capacitance versus
rotation angle of the star-shaped
cylinder.. Elevation height: h = 0
(black); h = 0.3 (blue); h = 0.34
(red).
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Figure 14. Normalized relative
capacitance function Crel(φp) of
the star-shaped cylinder, h = 0.

The capacitance dependence on the rotation angle graphs for the
rectangle shape is shown in Fig. 9. Fig. 10 shows the normalized
relative capacitance as a function of the probe rotation angle for
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Figure 15. Normalized relative
capacitance function Crel(φ′) of
the star-shaped cylinder, h =
0.34.

Figure 16. Sample: periodically
perforated cylinder (a = b =
0.35, n1 = 2, n2 = n3 = 2.2, m =
20).

centrally located sample, and Fig. 11 shows the normalized relative
capacitance as a function of the object rotation angle for the elevated
sample. It is clear that the closer is object to the probe, the more
information we can get from the capacitance image. The red line
in Fig. 9, corresponding to the most elevated position of the inner
conductor, gives the best estimate of the object shape, and Fig. 11,
representing elevated position, gives us correct information on number
of protuberances (unlike Fig. 10, representing centered position). The
fact that two petals are larger than two others indicates that the
corners of the object are not equidistant.

Now we present the similar capacitance and normalized
capacitance graphs the various positions of star-shaped cylinder
(Figs. 13, 14, 15) and periodically perforated object (Figs. 16, 18, 19).

The calculations of the capacitance in the probe-sample system
demonstrate the reliability of the applied method in the investigation
of the topography of the metallic samples. The most illustrative results
were obtained when the “rough” body case was investigated. Fig. 19
indicates the number of shape protuberances (20), and Fig. 17 clearly
reveals the shape itself. These results were most informative because
of the very close positioning of the sample near the wedge-shaped tip.
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Figure 17. Capacitance versus
rotation angle of the periodically
perforated cylinder. Elevation
height: h = 0 (black); h = 0.3
(red).
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Figure 18. Normalized relative
capacitance function Crel(φp) of
the periodically perforated cylin-
der, h = 0.
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Figure 19. Normalized relative capacitance function Crel(φ′) of the
periodically perforated cylinder, h = 0.3.

4. CONCLUSIONS

The main point demonstrated in this paper is the proved effectiveness
of the developed algorithm in examining the precise details of the
probe-sample system geometry and capacitance images. Such images
provide useful information about object geometrical parameters.
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However, the exact shape of the object cannot be restored. This
algorithm can be used as a fast and reliable direct solver required
for inverse problem studies, namely for the reconstruction of the
shape of an object from the capacitance function C(φ) or Crel(φ).
The accuracy of the algorithm is ensured by using the method
of analytical regularizations and confirmed by truncation error and
condition number computations. The small variations of capacitance
values (especially for the centred sample and a “rough” body case)
confirm the necessity of very high accuracy that can be achieved
with the use of our algorithm. The computational code (developed
in Matlab) is applicable for the problems with various number of
conductors and their shapes. The computational time depends on the
number of conductors in the system and the number of equations used;
for the two-conductor systems considered above solution for Ntr = 256
is obtained in less then 2 seconds on a standard computer. Using
the results developed for transmission problems in dielectrics [17, 18]
our developed method can be generalized on homogeneous and
inhomogeneous dielectric samples.
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