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ABSTRACT

It is well known that accurate forecasts of mortality rates are essential to various

demographic research like population projection, and the pricing of insurance

products such as pensions and annuities. Recent studies suggest that mortality

rates of multivariate ages are usually not leading indicators in mortality forecasting.

Therefore, multivariate stochastic mortality models including the classic Lee–Carter

may not necessarily lead to more accurate forecasts, compared with sophisticated

univariate counterparties like the exponential smoothing state space (ETS) model.

Despite its improved forecasting accuracy, the original ETS model cannot ensure

the age-coherence of forecast mortality rates. By introducing an effective penalty

scheme, we propose a penalized ETS model to significantly overcome this problem,

with discussions on related technical issues including the reduction of parameter

dimensionality and the selection of tuning parameter. Empirical results based on

mortality rates of the Australian males and females suggest that the proposed

model consistently outperforms the Lee–Carter and original ETS models. Robust

conclusions are drawn when various forecasting scenarios are considered. Long-term

forecasting analyses up to 2050 comparing the three models are further performed.

To illustrate its usefulness in practice, an application to price fixed-term annuities

with the penalized ETS model is demonstrated.
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1. Introduction

Improvements in life expectancy have spurred serious concerns about mortality

and longevity risks around the world over the past decades (see, for example, Beaumont

(1981),Kamerud (1989),Wajiga and Adekola (1998),N. Li and Lee (2005) and H. Li

and Lu (2017)). As argued in Giacometti, Bertocchi, Rachev, and Fabozzi (2012),

longevity risk means that people are surviving longer than expected or observed deaths

are lower than expected. Advances in medical science, technological improvements

and lifestyle changes tend to increase the longevity risk. For demographic research,

those risks significantly affect the accuracy of population projections. In demographic

and actuarial practice, they affect the pricing of life insurance, pension and annuity

products. For instance, overestimating the mortality rate may lead to underestimated

future population counts and thus a worse-than-expected risk profile for the annuity

providers.

To reduce such risks, the future of human survival has attracted considerable

interest in the past few decades, and forecasting mortality has gained prominence

in this context. Among the existing models, Lee and Carter (1992) develop their

seminal work which has been recognized as the most popular stochastic mortality

model, namely the Lee–Carter (LC) model. Because of its enormous popularity, the

LC model has become a benchmark for stochastic mortality modelling and forecasting.

However, the accuracy of forecasting with multivariate models like the LC is

debatable. Bell (1997) argues that a univariate simple random walk with drift model

generates more accurate short-term forecasts than the more complicated approaches

like curve fitting and principal components analysis. Chatfield (1997) also suggests

that simple univariate methods are often more robust to model misspecification and

to changes in the model than more complicated models. As pointed out by Du Preez

and Witt (2003), forecasting with multivariate models is more accurate only when

allowing for autocorrelations, the sample cross-correlation function exhibits meaningful

and statistically significant correlations. Regarding the mortality rates, a recent study

by Feng and Shi (2018) argues that the cross-correlations of residuals obtained from

univariate models on age groups are not significant. Consequently, multivariate rates

may not be leading indicators in mortality forecasting.

In the content of univariate forecasting, the exponential smoothing state space

(ETS) model systematically studied in Hyndman, Koehler, Snyder, and Grose (2002)

is an appropriate choice to forecast mortality rates. First, ETS is designed to model

and forecast non-stationary time series, which is the case of mortality rates since

they consistently decline over time. Second, the ETS framework decomposes a time

series into level and growth components, and models them separately. For mortality

rates, such a framework is reasonable and analogous to the age and temporal factors

considered in the LC model. When applied to the mortality rates, Feng and Shi (2018)
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demonstrate that the ETS model can consistently outperform a range of multivariate

models including the LC, Functional Data Model (FDM) developed by Hyndman and

Ullah (2007), the original VAR models and the sparse VAR model investigated in

Davis, Zang, and Zheng (2016), as well as the univariate AR-ARCH model proposed

by Giacometti et al. (2012).

Despite the outstanding performance of the ETS model, there is an important

practical issue left unresolved. As pointed out by research such as H. Li and Lu

(2017), forecasts of mortality rates should be age-coherent. That is, the rates of

neighboring age groups should not diverge. The concept of age coherence is extended

from the seminal work of N. Li and Lee (2005), who argue that the long-term mortality

improvements among various populations should be convergent. Due to its biological

and practical reasonableness, the (age) coherence feature is widely recognized and

incorporated in many novel mortality models. For instance, with respect to the factor-

type models (including the LC), Shang and Haberman (2020) discuss a grouped

functional mortality model, which focuses on the sub-national populations. As a

popular alternative, the coherent VAR-type model is firstly investigated in H. Li

and Lu (2017) with technical ad-hoc constraints on the mortality structure. Those

limitations are relaxed in recent studies of Feng, Shi, and Chang (2020) and Shi

(2020), and a dynamic extension is proposed in Chang and Shi (2020). A discussion

on the coherence, however, is absent for the ETS model. As evidenced in our empirical

results, long-term forecasts with the ETS model can exhibit significant divergence

across even neighboring age groups, which is then not coherent. This may lead to

significant adverse biological and/or practical implications, such that the mortality

rate of age 50 may be higher than that of age 60, and younger people may have to pay

for higher life insurance premiums.

To overcome this problem, a penalizing scheme should be considered in the

mortality modelling (see, for example, Renshaw and Haberman (2003), Delwarde,

Denuit, and Eilers (2007) and Pitt, Li, and Lim (2018)). In this paper, we follow

the approach of H. Li and Lu (2017) and proposes a penalized ETS model. More

specifically, at the estimation step of the original ETS model, a penalized least square

loss function is considered. The penalty scheme is realized via the sum of squared

differences of forecast mortality improvements between neighboring ages. As suggested

by H. Li and Lu (2017), there are at least two advantages of employing this penalty

structure. First, unlike the original ETS model, mortality improvements are forced

to be age-coherent (smoothed across neighboring ages). Second, such a penalty term

utilizes the idea of spatial dependence among mortality rates of different age groups.

Further, to increase the estimation efficiency, we adopt the Fourier flexible functional

form to reduce the dimensionality of free parameters. The related tuning parameter

selection issue is addressed via the cross-validation procedure discussed in Hyndman

and Athanasopoulos (2018).

3



In order to illustrate the effectiveness of our proposed model, empirical evidence

based on the Australian male and female mortality data sourced from Human

Mortality Database (2019) is provided. Using the smoothed rates ranging from 1950

to 2016, we systematically compare the forecasting performance of the LC, original

ETS and penalized ETS models. As measured by the root of mean squared error

(RMSE), the penalized ETS model consistently beats the LC and ETS model at

the 10-step-ahead forecasting horizon. Using replicates generated by the LC model

with Normality-disturbances assumption, the superiority of the penalized ETS model

is further evidenced via simulations. Robust results are also produced under various

scenarios, including those that no dimensionality reduction is considered, longer sample

period is used, 30-step-ahead horizon is studied, crude rates are employed, the Swedish

data are examined, and a multivariate penalized ETS model is investigated. We then

conduct long-term forecasting analyses. Forecast mortality rates and life expectancies

up to 2050 produced by all the three models are compared. To illustrate its usefulness

in practice, an application to price fixed-term annuities with the penalized ETS model

is demonstrated. This analysis follows a similar design adopted in Fung, Peters, and

Shevchenko (2015) and Shang and Haberman (2017).

The contributions of this paper are fourfold. First, the proposed ETS model

significantly complements the study of Feng and Shi (2018). ETS model enjoys a

great popularity in the forecasting practice and leads to superior results in the M3-

competition (Makridakis & Hibon, 2000). By ensuring the age-coherence of forecast

mortality rates, the penalized ETS model retains all the advantages and resolve the

most outstanding issue of the original ETS model. Second, an effective strategy to

reduce the dimensionality of the penalized ETS model is developed. Taking Australian

males as an example, our approach reduces the number of unknown parameters by

over 90% and still leads to robust forecasts as the unrestricted model. Third, the

forecasting performance of the penalized ETS model is systemically studied with

strong empirical evidence. Compared to the LC (original ETS) model, the out-of-

sample RMSE generated by the penalized ETS model is more than 50% (35%)

smaller for mortality rates of Australian males. Robust superiority of the proposed

model is also evidenced across various scenarios. Finally, via an application to annuity

pricing, we demonstrate the usefulness of the proposed model in practice. Hence, the

penalized ETS model can provide more accurate and meaningful mortality forecasts

for demographers, actuaries and other users interested in survival analysis.

The rest of this paper is organized as follows. In Section 2, we review the

specification and features of the ETS model. The penalized ETS model is described

in Section 3. We conduct empirical studies with robustness checks, long-term forecast

analyses and an application to annuity pricing in Section 4. Section 5 concludes the

paper.
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2. Exponential smoothing (ETS) state space model

Many popular forecasting models have the property that forecasts are weighted

combinations of past observations, with recent observations given relatively more

weights than older observations. Roughly speaking, those models can be classified

as the exponential smoothing family. The word ‘exponential smoothing’ reflects the

fact that weights decrease exponentially as observations get older (Hyndman, Koehler,

Ord, & Snyder, 2008).

ETS methods are originally classified by the taxonomy of Pegels (1969). They

are later extended by Gardner (1985), modified by Hyndman et al. (2002) and Taylor

(2003). Additionally, Ord, Koehler, and Snyder (1997), Hyndman et al. (2002) and

Hyndman, Koehler, Ord, and Snyder (2005) have shown that all exponential smoothing

methods (including non-linear methods) are optimal forecasts from innovations state

space models. By decomposing a time series into trend, seasonality and error and

considering different specifications for each of the three components, there are thirty1

distinct ETS methods (mainly by assuming an additive or multiplicative relationship

for each component).2 For details of those specifications, please refer to Section 2 of

Hyndman and Khandakar (2008).

In the case of mortality rates, seasonality is not present. Additionally, only the

additive trend and error specification are appropriate to model the logarithm structure.

Therefore, only two out of those thirty methods are potentially applicable, and both

are described below:

lnmx,t = lx,t−1 + φxbx,t−1 + εx,t

lx,t = lx,t−1 + φxbx,t−1 + αxεx,t

bx,t = φxbx,t−1 + βxεx,t

(1)

where lnmx,t is the log mortality rates for age x at time t, lx,t and bx,t measure the

level and growth of lnmx,t, respectively. αx and βx are their corresponding exponential

smoothing parameters. Estimates of αx and βx are obtained by minimizing the sum

of ε2
x,t. However, due to its iterative structure, different from usual least-squares

optimization, close-form solutions for the ETS model are not available.

Remark 1. With a sample size T , h-step-ahead forecast of lnmx,T is ln m̂x,T+h =

l̂x,T + b̂x,t
∑h

i=1 φ̂
i
x, and φ̂x measures the dampened degree of b̂x,t. In general, when

φx = 1, Equation (1) reduces to the additive trend ETS model (also known as the

Holt-Winters model). When 0 < φx < 1, it is a more general additive damped trend

ETS model.

1Among them, eleven cases are unstable and not preferred in practice (Hyndman et al., 2008).
2For the trend component, an additional ‘damped’ type (Gardner Jr & McKenzie, 1985) is also considered

for additive and multiplicative cases. Altogether, there are five different scenarios for trend: none, additive

(damped) and multiplicative (damped).
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Remark 2. For mortality rates, however, our preliminary analysis shows that the φ̂x

almost always reduces to 1 for all x, when a penalized scheme is imposed. Hence, we

only consider the Holt-Winters model in this paper. This suggests that the growth of

the log mortality rate is a constant in the long-run.

Remark 3. It is worth mentioning that when φx = 1, the specification explained in

Equation (1) is linked to the well-known ARIMA process. In particular, one can show

that

lnmx,t = lx,t−1 + bx,t−1 + εx,t

(1− L)lx,t = bx,t−1 + αxεx,t

(1− L)bx,t = βxεx,t

(2)

and thus rewrite lnmx,t as

(1− L)2 lnmx,t = (1− θ1,xL− θ2,xL
2)εx,t

where θ1,x = 2−αx−βx and θ2,x = αx−1, if an infinite start-up is assumed (Hyndman

et al., 2008). This may imply that lnmx,t is non-stationary and a special I(2) process

for each x, with the growth component described as a random walk without drift.

Although different from the I(1) process usually assumed for mortality rates, it does

not invalidate desirable statistical properties. To see this, the growth component is

a random walk without drift and hence has ‘stationary’ (constant) mean. As for

the mortality rates, the h-step-ahead forecast is ln m̂x,T+h = l̂x,T + hb̂x,T , and the

corresponding variance is σ̂2
ε [1 +

∑h
i=1(α̂x+ iβ̂x)2], where σ̂2

ε is the variance of ε̂x,t and∑h
i=1(α̂x + iβ̂x)2] captures the increasing uncertainty into the future with the growth

of h. Hence, forecasts of lnmx,t only depend on h (not t) and exponential smoothing

parameters, with finite mean and variance for finite h. Also, when 0 < αx < 1 and

0 < βx < αx, both level and growth components can be expressed as weighted averages

of past values. More importantly, those conditions are sufficient for invertibility,

stability and forecastability of lnmx,t (Hyndman et al., 2008). In short, those properties

ensure that observations in the distant past cannot have any effect on the forecasts.

As pointed out by Feng and Shi (2018), cross-correlation function cannot exhibit

meaningful and statistically significant correlations for mortality rates among ages,

after univariate models are fitted. On the other hand, the ETS model described above

naturally fits the properties of the non-stationary lnmx,t. Compared with the famous

Lee-Carter (LC) model, level and growth components of the ETS are directly analogous

to the age and temporal factors of the LC model. When applied to the mortality data,

Feng and Shi (2018) demonstrate that the univariate ETS model can outperform

multivariate competitors for mortality forecasting. An important limitation for this
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approach, however, is that the forecasts of mortality rates for neighboring ages may

diverge in the long run. For example, it is possible that the 50-step-ahead forecast

of the mortality rate of age 71 is higher than that of age 72. In other words, even if

using smoothed mortality rates as inputs, there is no guarantee that the longitudinal

forecasts will still have a smoothing structure. To overcome this potential issue, some

penalization scheme needs to be imposed to the ETS model.

3. The penalized ETS model

When h is large (indicating long-run forecasts), ln m̂x,T+h will be dominated

by b̂x,T+h = hb̂x,T , where T is the sample size. This is because that l̂x,T is not

changing with h and is therefore o(h). Therefore, to ensure the age-coherence of

forecast lnmx,T+h, it is sufficient to consider the impacts of bx,T among x only. This

is consistent with N. Li and Lee (2005), in whose seminal paper, they argue that

divergence of forecast mortality rates among ages is caused when the temporal effects

are not converged, whereas the age effects are not relevant. Following the smoothing

penalization scheme of H. Li and Lu (2017), a penalized ETS (PETS) model is

constructed by minimizing3

100∑
x=0

T∑
t=1

ε̂2
x,t + λ

99∑
x=0

(b̂x+1,T − b̂x,T )2 (3)

where ages span from 0 to 100, and λ is the known non-negative tuning parameter. If

λ = 0, this reduces to an unpenalized ETS model. The larger the λ is, the smoother

the resulting forecasts will be. A formal discussion of the age-coherence property is

presented below.

Definition 1. Age-coherence means that for the h-step-ahead forecasts, | ln m̂i,T+h−
ln m̂j,T+h| = Op(1), for all i, j ∈ {1, 2, ..., N}. That is, when h → ∞, | ln m̂i,T+h −
ln m̂j,T+h| will not diverge to infinity.

Theorem 1. The PETS model estimated as by (3) has age-coherent out-of-sample

forecasts when T → ∞, given that h and T go to infinity at the same rate,

λ
∑99

x=0(b̂x+1,T − b̂x,T )2 is Op(T ), and smoothing penalty λ goes large with T 3.

Proof. Note that in (3),
∑100

x=0

∑T
t=1 ε̂

2
x,t is Op(T ). Thus, for the penalty terms to

be effective, as in the given conditions, λ
∑99

x=0(b̂x+1,T − b̂x,T )2 should also be Op(T ).

3Different from H. Li and Lu (2017), we do not penalize αx and βx. One reason is that those parameters
will be smoothed after applying the procedure described in Section 3.1. The other reason is that out-of-sample

forecasts of lnmx,T+h do not directly depend on them. In other words, smoothed αx and βx will not necessarily
enforce the smoothness of bx,T across x.
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Since λ goes large with T 3, it implies that |b̂x+1,T − b̂x,T | = Op(1/T ). This can be

inferred, for instance, from λ
∑99

x=0(b̂x+1,T − b̂x,T )2 = Op(1/T
2).

Further, use Remark 3 and the assumption that h and T go to infinity at the

same rate, it can be shown that

| ln m̂x+1,T+h − ln m̂x,T+h| = Op(1) + h|b̂x+1,T − b̂x,T | = Op(1).

This result can then be straightforwardly extended to any two ages within 0, 1, ..., 100,

since ln m̂i+r,T+h − ln m̂i,T+h = ln m̂i+r,T+h − ln m̂i+r−1,T+h + ln m̂i+r−1,T+h −
ln m̂i+r−2,T+h + ... + ln m̂i+1,T+h − ln m̂i,T+h, for any r ≥ 1, which completes the

proof.

3.1. Reduction of dimensionality

Despite its theoretical soundness, the penalized ETS model described above is

difficult to estimate. Since each age has two free parameters αx and βx, the total

number of free parameters can be over two hundred. As no close-form solution is

available, the estimation efficiency is further largely affected.

To overcome such an issue, we investigate the structure of αx and βx across ages

to identify the possibility to reduce the dimensionality. We now focus on the smoothed

log mortality rates of Australian male aged 0–100 over 1950–2006.4 The fitted αx and

βx (α̂x and β̂x) of the unpenalized ETS model are plotted in Figure 1 as scatter dots.
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8

1.
0
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(b) βx

Figure 1.: Estimated αx and βx for Australian male mortality data

Both α̂x and β̂x demonstrate patterns across ages and similarities among

neighboring groups. Thus, we adopt the Fourier flexible functional form and model

4Our full sample covers the range over 1950–2016. As will be discussed, we focus on a 10-year test sample
(2007–2016) to evaluate the forecasting performance, and the rest (1950–2006) is employed as the training

sample. Hence, the in-sample fitted parameters discussed in this section are based on the training sample over
1950–2006.
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α̂x and β̂x as follows

α̂x = ωα +

nα∑
i=1

[γαi sin(
2πi(x+ 1)

101
) + δαi cos(

2πi(x+ 1)

101
)]

β̂x = ωβ +

nβ∑
i=1

[γβi sin(
2πi(x+ 1)

101
) + δβi cos(

2πi(x+ 1)

101
)]

(4)

where nα and nβ are selected as the minimal integers that make the R2 of the

corresponding linear regression over 50%.5 For the data examined here, nα and nβ

are 3 and 5, respectively. The fitted results are also demonstrated in Figure 1 as

solid lines, which well represent the overall structures of αx and βx. Thus, instead of

estimating αx and βx directly, given predetermined nα and nβ, we can estimate ωα,

ωβ, γαi , γβi , δαi and δβi and use Equation (4) to obtain fitted αx and βx which then

minimize Equation (3).6 In this way, we have successfully reduced the number of free

parameters by over 90% (from 202 to 18).

3.2. Selection of the tuning parameter

To select the tuning parameter λ, a natural solution is to employ the cross-

validation (for example, see H. Li and Lu (2017)). However, due to the univariate

time-series nature, related method such as leave-one-age-group-out is not applicable

for the ETS framework. Hence, we employ the procedure discussed in Hyndman

and Athanasopoulos (2018) to perform the cross-validation, which is also known as

‘evaluation on a rolling forecasting origin.’ The basic algorithm is explained below:

(1) Identify the first training set (e.g. lnmx,1,lnmx,2,...,lnmx,0.75T ) out of the the

entire sample;

(2) Given a value of λ, use the training set to fit the penalized ETS model and

obtain the 1-step-ahead forecast ln m̂x,0.75T+1;

(3) Extend the training set to include lnmx,0.75T+1 and refit the penalized ETS

model to obtain the 1-step-ahead forecast ln m̂x,0.75T+2;

(4) Repeat steps 2–3 until ln m̂x,T is generated; and

5The principle here is to balance the parsimony and accuracy in describing the structures of αx and βx.

However, the optimal structures may change significantly when a penalty term is imposed. Thus, high-level
precision in replicating the patterns of αx and βx from the unpenalized ETS model is not the focus. Therefore,

we use 50% R2 as a basic criterion to perform the selection. Robust results (available upon request) are

produced when other choices including 30%, 60% and 90% are used. In one of the robustness check (can be
found in the supplemental online material), we demonstrate that our selection has similar results to the model

without dimensionality reduction. A systematic study on the optimal criteria for such a reduction remains for

future research.
6The optimization can be performed with any usual numerical algorithms such as BFGS. In this paper, we

adopted an effective and fast algorithm discussed in Ye (1987) to conduct the minimization, which is realized
in the Rsolnp package of the statistical software R.
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(5) Calculate the root of mean squared error (RMSE) as

√√√√ 1

0.25T × 101

100∑
x=0

0.25T∑
h=1

(lnmx,0.75T+h − ln m̂x,0.75T+h)2

.
λ is then chosen as that with the smallest RMSE. Even when no penalty is imposed,

the neighboring bx,T may be already close to each other. Thus, it is expected that the

value of λ can be quite large.

3.3. Overall fitting procedure

Combine the procedures of dimensionality reduction and tuning parameter

selection, the overall fitting procedure of the penalized ETS model is explained below:

(1) Fit univariate ETS models for each age group individually to obtain α̂x and β̂x;

(2) Select nα and nβ as described in Section 3.1;

(3) Given nα and nβ, select the tuning parameter λ as described in Section 3.2; and

(4) Use the determined nα, nβ and λ with Equation (4) to minimize Equation (3).

Forecasts of mortality rates can then be produced using the model as fitted above.

Due to the penalized feature, the final obtained α̂x and β̂x may not be asymptotically

consistent. Thus, the non-parametric Bootstrap prediction intervals as described in

Hyndman et al. (2008) can be employed to measure our forecast uncertainty.

4. Empirical application

In this paper, we use the Australian mortality data obtained from the Human

Mortality Database (2019). Following Booth, Hyndman, Tickle, and De Jong (2006),

we choose an opportune range of data starting from 1950 to 2016 in order to have

a reliable and complete dataset. The smoothed male and female mortality rates7 are

studied separately, and the log rates are plotted in Figure 2 across all years. Consistent

improvements over time are observed for both sexes.

To illustrate the powerfulness of our proposed model, we follow existing studies

such as Feng and Shi (2018) and examine the 10-step-ahead forecasting8, and the

results of the LC, unpenalized ETS and penalized ETS models are compared.

Therefore, our training sample ranges over 1950–2006, which is to be fitted by the

three models individually, and the test sample of 2007–2016 is employed to calculate

the out-of-sample RMSE as the criterion for comparison.

7The smoothed rates are produced using the weighted penalized regression splines with a monotonicity
constraint. This is a standard method employed in the demography package of the statistical software R.

8In order to check the sensitivity of this chosen forecasting horizon, we also consider a long range of 30
steps. The results are robust and can be found in section 2 of the online supplementary materials.
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Figure 2.: Australian mortality data 1950–2016

4.1. Results of the tuning parameter selection

Before selecting the tuning parameter λ, we need to determine nα and nβ as

described in Section 3.1 to reduce dimensionality. As discussed previously, the results

are 3 and 5, respectively, for Australian males. The estimated αx and βx from

unpenalized ETS models for Australian females are plotted in Figure 3. According

to R2 of linear regressions, the selected nα and nβ are also 3 and 5, respectively.9 As

demonstrated in Figure 3, the overall structures of both parameters are well captured,

after the dimensionality reduction.
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Figure 3.: Estimated αx and βx for Australian female mortality data

According to Equation (3), the total loss function consists of sum of squared

errors (SSE) and tuning parameter multiplying sum of squared differenced bx,T . For

the unpenalized ETS model, SSE for the Australian males is around 22.108, whereas∑99
x=0(bx+1,T − bx,T )2 is only 0.004, suggesting the similarities of neighboring bx,T .

9Comparing Figures 1 and 3, there are some marginal differences in αx and βx among males and females.

The main trends, however, are similar across sexes. This is consistent with our selected values of nα and nβ .
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However, such similarities are not adequate to ensure age-coherence, which is enforced

by the penalty term described in Equation (3). Intuitively, if this term were as large

as the SSE, λ needs to be at least 5000. Further, when the penalty is being considered

in the optimization, SSE will be increased, while
∑99

x=0(bx+1,T − bx,T )2 should reduce.

Thus, it is expected that an optimal λ might be at the scale of 104 or more. We

then perform a grid search of λ within the range of (10−4, 106). Using the procedure

explained in Section 3.2 with 75% sample as the starting training set, the optimal λ

chosen for male (female) is 111111.10 (101010.10), which is in-line with the assumption

of Theorem 1 such that λ goes large with T 3 (T = 57 in this case).

4.2. Results of forecasting performance

To compare the forecasting performance across models, we follow H. Li and Lu

(2017) and employ the RMSE. We consider both RMSEs over age groups and time

horizons only and an overall measure as follows:

RMSEx =

√√√√ 1

10

10∑
h=1

(lnmx,T+h − ln m̂x,T+h)2

RMSEh =

√√√√ 1

101

100∑
x=0

(lnmx,T+h − ln m̂x,T+h)2

RMSEall,h =

√√√√ 1

101× h

h∑
i=1

100∑
x=0

(lnmx,T+i − ln m̂x,T+i)2

(5)

RMSEx (RMSEh) is the RMSE averaged over all 10 forecasting steps (101 age

groups) for age group x (time horizon h). RMSEall,h is the overall measure considering

both dimensions up to step h. Relevant results for all three models are reported in

Tables 1 and 2, as well as in Figures 4 and 5.

Figure 4 displays the RMSEx. For Australian males, penalized ETS model

produces smaller RMSE than LC for almost all age groups. Its performance is also

better than that of the ETS model in most cases. Unlike LC (e.g. for ages 40–60) and

ETS (e.g. for ages 0 and 20) models, penalized ETS does not produce any unusually

large RMSE. As summarized in Table 1, the mean RMSEx across all age groups for

penalized ETS model is only 40% of that for LC model. Compared to the ETS, adding

the penalty scheme improves the forecasting performance by 30% on average. Q1 and

Q3 measures further support that the penalized ETS model consistently outperforms

LC and ETS counterparties. Standard deviation of RMSEx confirms that results

of penalized ETS are much more narrowly spread than LC and ETS models. Those

observations are largely robust with regard to those for the Australian female mortality

rates, although the improvement of the penalized ETS model over the rest is smaller.
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Table 1.: Summary of RMSE over age groups for the forecast Australian mortality
data

Model RMSEall,10 Mean Std. Dev. Q1 Q3

Panel A: Male
LC 0.1884 0.1625 0.0957 0.0794 0.2524
ETS 0.1217 0.1031 0.0649 0.0569 0.1243
PETS 0.0788 0.0712 0.0339 0.0447 0.0973

Panel B: Female
LC 0.1383 0.1144 0.0781 0.0369 0.1846
ETS 0.1173 0.0952 0.0688 0.0448 0.1183
PETS 0.1015 0.0824 0.0596 0.0445 0.0962

Note: this table displays the RMSE over age groups for the 10-step-ahead forecasts of
Australian male and female mortality rates. RMSEall,10 is the overall RMSE across
all ages and time horizons. Mean, Std. Dev., Q1 and Q3 are the sample mean, standard
deviation, first quartile and third quartile of the RMSEs over age groups, respectively.
Bold numbers represent the smallest RMSEs among three models. LC, ETS and PETS
stand for Lee-Carter, ETS and penalized ETS models, respectively.

Table 2.: RMSEs over time horizons of the forecast Australian mortality data

Steps
Male Female

LC ETS PETS LC ETS PETS

1 0.1368 0.0518 0.0471 0.0965 0.0647 0.0665
2 0.1546 0.0595 0.0510 0.0964 0.0662 0.0601
3 0.1632 0.0718 0.0593 0.1374 0.1038 0.0940
4 0.1981 0.1065 0.0850 0.1089 0.0790 0.0610
5 0.1642 0.0998 0.0529 0.1403 0.1097 0.1047
6 0.1653 0.1048 0.0551 0.1061 0.0817 0.0801
7 0.2139 0.1477 0.0791 0.1465 0.1343 0.1101
8 0.2178 0.1664 0.0930 0.1692 0.1580 0.1360
9 0.2241 0.1592 0.1148 0.1780 0.1693 0.1462
10 0.2205 0.1722 0.1125 0.1713 0.1468 0.1140

Note: this table displays the RMSE over time horizons of the forecast Australian male
and female mortality rates for 10 steps. LC, ETS and PETS stand for Lee-Carter, ETS
and penalized ETS models, respectively. Bold numbers represent the smallest RMSEs
among three models.

13



Male Female

0 25 50 75 100 0 25 50 75 100
0.0

0.1

0.2

0.3

Age

Method

LC

ETS

PETS

Figure 4.: RMSEs over age groups for Australian mortality data
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Figure 5.: RMSEs over forecasting steps for Australian mortality data
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As indicated by RMSEall,10, the overall performance of the penalized ETS model also

beats the other two for both males and females.

Figure 5 plots the RMSEall,h for h ranging from 1 to 10. Distinct differences

between penalized ETS and LC models can be observed for both males and females at

all forecast horizons. Comparing with ETS model, RMSEall,h for the penalized ETS

model is smaller in almost all scenarios. Further, with the growth of h, the increment

in RMSEall,h is slower for the penalized ETS model, suggesting its better performance

in the long run. Table 2 reports RMSEh at each of the 10 steps. Again, the penalized

ETS model consistently beats the rest, except for the 1-step-ahead female forecast.

In order to understand this superiority, we compare the forecast mortality rates

of all models at the tenth step. Figure 6 demonstrates the three forecast ln m̂x,2016

sequences together with the actual data in 2016. Due to the lack of penalty scheme,

ETS model displays incoherent patterns and divergences among ages for both sexes.

Overall, the LC model (under-) over-forecasts the rates for age groups 20–30 (30–60).

Relatively speaking, forecasts of the penalized ETS model are not diverged as those of

ETS and better capture the variations among age groups than both the LC and ETS

models. Thus, the results of the penalized ETS model are overall closer to the actual

data.

Results of this section are robust when various scenarios are considered and

a simulation study is performed. Details can be found in the supplemental online

material.

Male Female

0 25 50 75 100 0 25 50 75 100
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PETS

Data

Figure 6.: Forecasts vs actual Australian mortality data in 2016

4.3. Long-term forecast analysis

We now examine the long-term forecasts of the three models. The complete

datasets are employed (from 1950 to 2016), and the mortality rates are forecast to

2050 for both Australian males and females. For our penalized ETS model, nα and
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nβ are chosen as 3 and 5 (3 and 8), respectively, for males (females). The optimal

tuning parameter is 80808.08 in both cases. Forecast mortality rates in 2050 and the

life expectancies ranging 2001–2050 are plotted in Figures 7 and 8, respectively.

Male Female

0 25 50 75 100 0 25 50 75 100

−9

−6

−3

Age

Method

2050 LC

2050 ETS

2050 PETS

2016 Rates

Figure 7.: Australian mortality rates in 2016 vs Forecast rates in 2050

Comparing with the actual mortality rates in 2016, forecast rates in 2050 suggest

significant improvements in all cases. Due to the lack of penalty scheme, ETS model

results in significant divergences among most age groups. In contrast, forecast rates of

LC and penalized ETS models are much more smoothed across all ages. The differences

between results of LC and penalized ETS models are largely consistent with our

observations in Figure 6. Roughly speaking, LC tends to produce higher rates for

ages 20–30 but lower rates for ages 30–60 than the penalized ETS model. Given the

observed large RMSEx of the LC model at those ages in Figure 4, the corresponding

forecasts of the penalized ETS model are potentially more reliable. The only difference

between Figures 6 and 7 is that forecast 2050 rates of LC suggest smaller improvements

for old male age groups (e.g. 80–95) than the penalized ETS model.

Among all information generated from mortality rates, life expectancies are widely

studied in demographic research and investigated in actuarial practice. In Figure 8,

we report the actual Australian life expectancies at birth from 2001 to 2016, together

with mean/point forecasts (solid line) and 95% prediction intervals (dashed line) of

forecasts up to 2050. The prediction intervals (PIs) of all models are calculated using

the 2.5th and 97.5th percentiles of the Bootstrap samples with 5000 replicates. Despite

the similarities of mean forecasts, the PIs of LC model are relatively wider than

those of the other two models. This indicates the potential higher efficiency of our

proposed model over the LC model for prediction uncertainty measure. For male life

expectancies, results of LC and penalized ETS models are fairly close to each other,

with a divergence starting at around 2025. Since then, the penalized ETS model

indicates longer expectancies, with the final forecast as of 2050 being 86.36 years,

and the result of LC is 85.75 years. Turning to the females, the differences between
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Figure 8.: Actual and forecast Australian life expectancies: 2001–2050

forecasts of LC and penalized ETS are even smaller. The final forecasts are 89.30 (LC)

and 89.02 (penalized ETS) in 2050. ETS model produces the lowest life expectancies

in all cases, although the widths of its PIs are as narrow as those of the penalized ETS

model.

4.4. Applications to fixed-term annuity pricing

An important application of long-term mortality forecast is for elderly population

(approximately older than 65 years of age). As discussed in Section 4.3, due to the

lack of the coherence, the ETS model will lead to questionable long-term results for

this population group. For instance, from Figure 7, the forecast Australian male rate

in 2050 of age 70 is higher than both the true rate in 2016 and the forecast rate

of age 75. In life insurance practice, for example, this unreasonably suggests that

younger policyholders will pay for higher premiums than older policyholders. Those

questionable issues of long-term forecasts are completely resolved when the PETS

model is employed, indicating its much more improved reliableness over the ETS model

for actuarial practices.

To demonstrate practical applications of the PETS model, we follow Fung et

al. (2015) and Shang and Haberman (2017) to consider fixed-term annuities in this

paper. Such products have enjoyed growing popularity globally. Comparing to the

lifetime annuities, fixed-term annuities pay a predetermined and guaranteed income

of higher level. Deferred option for those products is usually available. In terms of the

pricing, we adopt a cohort approach as employed by Fung et al. (2015) and Shang and

Haberman (2017), and the maximal survival age is limited to 100-year-old. First, the
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τ year survival probability of a person aged x at t = 0 is

τpx =

τ∏
j=1

1px+j−1 (6)

where τ1px+j−1 = e−mx+j−1 and mx+j−1 can be obtained from mortality forecasts. This

equation essentially assumes that the central mortality rates are constant throughout

the one-year period. Thus, the price of an annuity with maturity T year, written for

an x-year-old with benefit $1 per year and conditional on the survival is determined

as

aTx (mx,1:T ) =

T∑
τ=1

B(0, τ)E(I(Tx > τ)|mx,1:T ) (7)

where I(·) is the indication function, Tx is the survival time, and B(0, τ) is the τ -year

bond price at a interest rate equal to the yield of the annuity. Given that E(I(Tx >

τ)|mx,1:T ) = τpx(mx,1:T ), the fixed-term annuity price is a function of the underlying

yield and mortality rates. Therefore, for the purposes of pricing and risk management,

it is critical to producing accurate forecasts of mx,1:T which appropriately capture the

mortality experiences of policyholders.

To illustrate its application in practice, we employ up to 35-step-ahead forecasts

(from 2017 to 2051) of the PETS model and price the fixed-term annuities as

of 2016 in Table 3. The calculation is performed for both Australian males and

females up to 30-year-maturity, starting from age 65. Following Fung et al. (2015),

we examine four age groups and derive both mean and interval estimates. The PIs

are produced with 5000 Bootstrap replicates, as constructed in Section 4.3. Also, we

assume a constant interest rate of 3% throughout all maturities. Consistent with our

previous observations, annuity prices for female are higher than the corresponding

male counterparties, indicating lower exposure to mortality. In terms of PIs, the

widths (measured in percentage of deviation from mean) of males and females are

fairly close, although those of males are slightly wider. This is as expected, since

mortality forecast of female is normally less uncertain than that of male. It is worth

mentioning that the widths of our PIs are narrower than those stated in Fung et

al. (2015) and Shang and Haberman (2017). Despite the difference in data coverage,

this preliminarily indicates the potential efficiency of our proposed PETS model on

measuring mortality forecasting uncertainty in practice. As argued in Fung et al.

(2015), underpricing as small as by 0.1% can lead to dramatic shortfall in reserving

with a large portfolio. Hence, accurately and efficiently measure the uncertainty of

premium rate can significantly help insurers optimize their reserves to minimize the

ruin probability.
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Table 3.: Predicted fix-term annuity prices for Australian males and females

Age Measure T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

Panel A: Male
65 Mean 4.5192 8.3838 11.6717 14.4404 16.7291 18.5695

LB 4.5168 (-0.05%) 8.3767 (-0.08%) 11.6546 (-0.15%) 14.4166 (-0.16%) 16.6417 (-0.52%) 18.3474 (-1.20%)
UB 4.5216 (0.05%) 8.3911 (0.09%) 11.6877 (0.14%) 14.4622 (0.15%) 16.7970 (0.41%) 18.7515 (0.98%)

70 Mean 4.4819 8.2914 11.4936 14.1343 16.2510 17.8099
LB 4.4765 (-0.12%) 8.2759 (-0.19%) 11.4724 (-0.19%) 14.0539 (-0.57%) 16.0376 (-1.31%) 17.3889 (-2.36%)
UB 4.4872 (0.12%) 8.3061 (0.18%) 11.5153 (0.19%) 14.2006 (0.47%) 16.4280 (1.09%) 18.1782 (2.07%)

75 Mean 4.4127 8.1151 11.1601 13.5929 15.3858 NA
LB 4.4030 (-0.22%) 8.0964 (-0.23%) 11.0892 (-0.64%) 13.3985 (-1.43%) 14.9955 (-2.54%) NA
UB 4.4218 (0.21%) 8.1325 (0.21%) 11.2210 (0.55%) 13.7534 (1.18%) 15.7293 (2.23%) NA

80 Mean 4.2788 7.7881 10.5823 12.6436 NA NA
LB 4.2647 (-0.33%) 7.7315 (-0.73%) 10.4161 (-1.57%) 12.2869 (-2.82%) NA NA
UB 4.2907 (0.28%) 7.8437 (0.71%) 10.7277 (1.37%) 12.9683 (2.57%) NA NA

Panel B: Female
65 Mean 4.5405 8.4318 11.7533 14.5636 16.8979 18.7570

LB 4.5392 (-0.03%) 8.4285 (-0.04%) 11.7433 (-0.09%) 14.5316 (-0.22%) 16.7692 (-0.76%) 18.5246 (-1.24%)
UB 4.5418 (0.03%) 8.4352 (0.04%) 11.7623 (0.08%) 14.5898 (0.18%) 16.9829 (0.50%) 18.9378 (0.96%)

70 Mean 4.5164 8.3691 11.6247 14.3235 16.4699 18.0704
LB 4.5142 (-0.05%) 8.3610 (-0.10%) 11.5985 (-0.23%) 14.2182 (-0.73%) 16.2631 (-1.26%) 17.7896 (-1.55%)
UB 4.5186 (0.05%) 8.3760 (0.08%) 11.6488 (0.21%) 14.3991 (0.53%) 16.6407 (1.04%) 18.3163 (1.36%)

75 Mean 4.4682 8.2390 11.3581 13.8355 15.6814 NA
LB 4.4632 (-0.11%) 8.2210 (-0.22%) 11.2744 (-0.74%) 13.6608 (-1.26%) 15.4042 (-1.77%) NA
UB 4.4735 (0.12%) 8.2570 (0.22%) 11.4227 (0.57%) 13.9913 (1.13%) 15.9160 (1.50%) NA

80 Mean 4.3664 7.9700 10.8285 12.9571 NA NA
LB 4.3555 (-0.25%) 7.9167 (-0.67%) 10.6919 (-1.26%) 12.7123 (-1.89%) NA NA
UB 4.3775 (0.25%) 8.0197 (0.62%) 10.9550 (1.17%) 13.1704 (1.65%) NA NA

Note: this table displays the forecast fix-term annuity price for Australian males and females as of 2016. The forecast mortality rates
range from 2017 to 2051. LB and UB stand for the 2.5th and 97.5th percentiles of the Bootstrap prediction interval, respectively. Mean
is the point/mean forecast price. T is the maturity term. Value in bracket is the percentage difference compared to the forecast mean
annuity price. We only consider contracts with maturity so that age + maturity ≤ 100.
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5. Concluding remarks and discussions

This paper proposes a penalized exponential smoothing state space (PETS) model

to forecast mortality rates. Three key conclusions can be drawn from our study. First,

the new model extensively complements the original ETS model and ensures the age

coherence in the long run. Second, PETS model outperforms the famous Lee-Carter

and the ETS counterparties, in terms of mortality forecasting accuracy. Thirdly, the

improved long-term forecasting reliability makes the PETS model much more desirable

than ETS for actuarial practices, such as the fixed-term annuity pricing.

The proposed PETS model has many managerial implications in practice. For

instance, the model may assist life insurers in the profitability analysis, which heavily

rely on accurate forecasts. One example is that life insurers need to hold a significant

amount of reserves, which is usually determined by a conservative risk metric, such as

the 99% value-at-risk produced by the adopted mortality model. Since those reserves

can only earn a minimum (risk-free) return, over-reserving (i.e. the value-at-risk is too

large) will lead to lower investment returns and thus negatively affect the profitability

of the life insurance products. As discussed in Section 4.3, the interval forecasts of

PETS are more efficient than those of LC. Adopting the PETS model could therefore

improve the profitability of life insurers.

Another application is related to the risk mitigation analysis. Because that

longevity and mortality risks are natural offsets of each other, life insurers may

consider offering life annuities in addition to life insurance products. Such a viability

investigation will require portfolio-level scenario analyses, under which both life

annuities and insurances are offered simultaneously. In this case, one can use the

forecast rates of the PETS model to simulate a wide range of forecast rates with

various certainties. A before-and-after comparison can then be conducted to analyze

the effectiveness in mortality risk mitigation, if the life annuities are to be offered.

Overall, the merits of our research are briefly summarized as follows. First,

the major research question, i.e. the concept of age coherence, is mathematically

defined and is therefore not vague. Second, comprehensive analyses are conducted

to support our arguments. Those include the RMSE of point forecasts at both the

age and temporal dimensions, a long-term analysis with point and interval forecasts,

a carefully designed simulation study and robustness checks of five different factors.

Finally, we provide a practical application on the annuity pricing with the proposed

model to demonstrate its real-life usefulness. The major limitation of this research is

its empirical coverage. Due to the space constraints, the current study mainly focuses

on the Australian mortality data with one robustness check of the Swedish data.

In addition to exploring more empirical data, there are three potential future

directions to extend this study. First, existing literature has extensively discusses the

temporal forecasts of mortality rates, but little has been explored for the age-dimension
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forecasts. For its univariate feature, the PETS model can be naturally employed to

forecast mortality rates of very old ages with time periods fixed. A relevant example

can be found in Giacometti et al. (2012), who use the AR-ARCH model to fit the

Italian data of ages 40–91 and forecast those of ages 92–94 over 1960–2006. This is

particularly important when the mortality rates of the very old ages are scare, volatile

and thus unreliable to use directly. Second, the uncertainty measure may be improved if

an appropriate modeling strategy is employed. One potential approach is to employ the

two-step framework as in H. Li and Lu (2017), where the contemporaneous dependency

of age-specific residuals is captured in the fitted variance-covariance matrix. Another

pathway is to capture the temporal heteroskedasticity using ARCH or GARCH models

as in Giacometti et al. (2012). Those parametric methods may produce more efficient

prediction intervals, compared to those generated by the Bootstrap method as in this

paper. Finally, some technical details influencing the estimation of the PETS model

are worth further investigation. For instance, in Section 3.1, we adopt the Fourier

flexible functional form to reduce the parametric dimensionality of the PETS model.

Alternatively, many spline-based parametric models, such as the natural spline, p-

spline and super smoother (Friedman & Silverman, 1989), may be employed. Also,

a relevant criterion (to replace the 50% R2 used in this paper) is worth examining

to balance the trade-off of parsimony and accuracy and to help select an optimal

dimensionality strategy.

Supplemental online material

Please see supplemental online material for the discussions and results of the

simulation study and robustness check.
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