
Evaluation of the Serialisation and Deserialisation Performance of Table

Driven XML

Alex Ng

alexng@ics.mq.edu.au

Department of Computing, Macquarie University, North Ryde, NSW 2109, Australia

Abstract
SOAP is a simple object access protocol that

builds upon the versatile XML standard in providing
the widely interoperable cross-platform system-to-
system Web Services. However, the intrinsic character
based XML standard coupled with finite network
resources and the heterogeneous nature of a vast
variety of devices involved in the process bring about
unavoidable delays. Table Driven XML (TDXML)
provides an efficient way of accelerating the
bottlenecks of network verbosity and at the same time
improves the inefficient serialisation/deserialisation
process of converting machine object representations
to/from XML representations. TDXML encodes the
message data into tabular format, with each data and
attribute element being assigned unique identifiers for
improved serialisation and deserialisation efficiencies.
Evaluation result shows that the proposed technique
reduces the resultant message size by over 200% and
improves the serialisation/deserialisation efficiency by
400% when compared to other standard SOAP
implementations.

1. Introduction
The requirement for an increased security measures

[10] for the Web Services protocol stacks; the negative

impact of XML’s verbosity and processing overhead,

storage requirements, and bandwidth consumption

[15]; have made the need for an optimised transfer

mechanism for Web Services an eminent issue. There

are a number of performance enhancement techniques

being proposed [13]. A majority of the enhancement
techniques have emphasised on compressing XML

message size through different techniques, such as,

software or hardware compression [6], using shorter

XML tags [16], using binary metadata [18], and using

binary XML encoding to replace the unparsed, text-

based XML format [9, 13].

However, not many of the proposed techniques

provide efficient ways to reduce the network verbosity

while at the same time improve the inefficient

serialisation and deserialisation processes in the SOAP

protocol. The performance of the SOAP protocol is

affected by numerous factors: the implementation

platform, the choice of encoding style, and the

complexity of the message structure. Chiu et al. [2]

confirm that object serialisation and deserialisation are

the bottlenecks in a SOAP transaction.

Table Driven XML (TDXML) is a proposal that

does not just aim to reduce the network verbosity issue
of XML but also improves the parsing and serialisation

and deserialisation processes. There are four objectives

of this work. Firstly, TDXML must be based on the

XML technology because the ubiquitous use of XML

is vital. Secondly, the verbose nature of XML based

technologies has induced extra network bandwidth

requirements for Web Services. It is necessary for

TDXML to provide a compact message footprint that

is more network bandwidth friendly than XML so that

devices running on slow network can benefit from it.

Thirdly, just reduce network bandwidth requirement is
not enough. TDXML should also improve the parsing,

serialisation and deserialisation efficiencies. Finally,

often, users want to leave their existing non-XML

formats to be treated as opaque sequences of octets by

XML tools and infrastructure. Such an approach would

allow widely used formats such as JPEG and WAV to

coexist with XML. Therefore, TDXML must be able to

encode opaque binary data.

The rest of this paper is organised as follows:

Section 2 explains some of the design features in

TDXML. Section 3 provides the results of an analysis

of the performance of TDXML. Section 4 discusses
related work and some conclusions are presented in

Section 5.

2. Overview of TDXML
TDXML is built upon the XML standard. A

TDXML document is embedded in an XML document
like a SOAP message embeds in an XML document.

The presence of a TDXML document is signified by a

pair of <TDXML:Envelope> </TDXML:Envelope>

tags (<TDXML:Env> </TDXML:Env> in short form).

Instead of grouping the elements in an XML tree

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

structure, the elements are grouped into columns and

rows. This has the advantage of reducing the number

of passes needed to parse a TDXML document down

to one. A TDXML document is composed of two

entities: Data Schema and Data. The TDXML Data
Schema is required for both the sender and the
recipient to properly interpret the data involved. It is

required at service setup time; subsequent exchanges of

messages require sending an XML namespace of the

original schema only. When both parties have agreed

on a set of schemas, special data handlers can be

developed to perform the actual serialisation and

deserialisation of the data.

TDXML := f{DataSchema, Data} (E1)

Figure 1: An example showing a block of TDXML

data representing the details of two persons.

There are many encoding schemes available to

construct a TDXML document. In this paper, only the

Aggregated Scheme is presented. Inside a

<TDXML:Envelope> block, the Aggregated Scheme
uses two tables to provide different information: Data
Schema and Content Table.

TDXML Aggregated Scheme := f{DataSchema,
ContentTable} (E2)

The Data Schema provides important information

for describing the structure and constraining the

contents of a TDXML document. The Content Table
contains the actual data and attribute representations of
a structure instance described in a TDXML Data
Schema.

2.1 TDXML Data Schema

A TDXML Data Schema is marked by the

<TDXML:DataSchema> </TDXML:DataSchema>

block (<TDXML:DS> </TDXML:DS> in short form).

The Data Schema provides functions that are similar to

XSD with some additional features built into it. As

with XSD, TDXML uses a rich datatyping system to
allow for detailed constraints on a document’s logical

structure, and the associated rules that are required by a

robust validation framework. TDXML makes use of

Abstract Syntax Notation One (ASN.1) [5] to describe

the data schema contained in a TDXML Data Schema
block. There are tools [11] available to convert the

XML Schema of a document into ASN.1 notation.

Using ASN.1 to describe TDXML Data Schema
delivers the following advantages over XML Schema:

(1) The resultant schema definition is smaller;

(2) It is easier to add additional custom features to

the schema;

(3) It is easy for machines as well as humans to

understand the resultant schema representation;

and

(4) It provides a clear separation of the information

content of messages from the encoding and

representation of those documents.

The example shown in Figure 1 defines the simple

structure of a <person>, which contains an attribute
<lang> that has a default value ‘English’. Each

<person> contains other details such as <firstname>

and <lastname>. The element <person> is assigned tag

[0], which is the root element. The attribute <lang> is

assigned tag (0), which is the first attribute for the

element <person>. The child elements of <person>,

<firstname> and <lastname>, are assigned tags [0] and

[1] respectively. The unique identification of

<firstname> is [0][0], meaning the first child element

of the root element; and the unique identification of

<lastname> is [0][1], meaning the second child
element of the root element. The unique identification

of the attribute <lang> is 0, which means the first

attribute of the root element.

2.2 TDXML Content Table

A TDXML Content Table is identified by the

<TDXML:ContentTable> </TDXML:ContentTable>

block (<TDXML:CT> </TDXML:CT> in short form).

The TDXML Content Table contains unique identifiers

for each XML element/attribute and their
corresponding values in a table format. In the example

shown in Figure 1, the first row has the entry

‘[0]0(0)|English’ which identifies the attribute

<lang> in the first occurrence of the <person> element.

The second row’s entry is ‘[0]0[0]|Alan’ which
identifies the child element <firstname> of the first

occurrence of the <person> element. The value of the

element is ‘Alan’. The last row’s entry is

‘[0]1[1]|Michell’ which identifies the child
element <lastname> of the second occurrence of the

<person> element. The value of this <lastname>

element is ‘Michell’.

From the above example, we immediately can see

some of the benefits that TDXML offers:
(1) The table format is easily understood by humans

and machines;

<TDXML:Env>
<TDXML:DS>
person [0]::= SEQUENCE OF{
lang(0) [ATTRIBUTE]
 UTF8String (“English”)
firstname[0] UTF8String,
lastname[1] UTF8String }
</TDXML:DS>
<TDXML:CT>
[0]0(0)|English
[0]0[0]|Alan
[0]0[1]|Johnson
[0]1(0)|French
[0]1[0]|Chris
[0]1[1]|Michell
</TDXML:CT>
</TDXML:Env>

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

(2) The simple tag numbering format enables data to

be validated and retrieved with ease;

(3) The serialisation and deserialisation processes are

straightforward;

(4) The resultant document format is able to provide

direct-access and streaming capabilities; and
(5) Compatible with existing XML parsers.

3. Performance Evaluation
The tests reported here were based on a simple

application with effectively no application logic but

just performed serialisation and deserialisation of the

data objects on a Microsoft Windows based platform.

The test setup consisted of a multi-threaded test driver
written in Microsoft’s C# language using the .NET

API. This test driver goes through the following stages

to perform precise measurements:

1. Initialisation Stage: The specified test objects

are constructed. All the threads are started and

each goes into “Suspend” mode to wait for the

“Run” signal issued by the test controller. The

test controller ensures all test threads had gone

through the initialisation tasks before firing the

“Run” signal.

2. Run Stage: Once the “Run” signal is received,
each test thread performs the task assigned and

log the duration taken to perform the task in

memory. Each test thread repeats the task until

the test controller fires the “Stop” signal to the

test thread.

3. Finalisation Stage: The test controller retrieves

all the test results from each thread and

consolidates the results into a report on screen.

A configuration file was used to control the setup of

the test environment such as: (1) the number of client

threads to be used; (2) the duration of the test run; (3)

the task to be performed (i.e. serialisation or
deserialisation); (4) the implementation platform to be

tested; and (5) the message type to be used.

3.1 Test Scenario and Message

Five test messages were used in this study. The

messages are of varying length and complexity. The

first test message (short) represents conventional text

based messages which contains a text message of

50byte length. The second message (simple) contains a

single customer’s account record and uses string,
Boolean and datetime data items. The third message

(medium) consists of twenty customer account records,

representing a batch inquiry and subsequent update

transaction. The fourth message (complex) consists of

one customer record and 50 product details,

representing an invoice or a customer statement. The

fifth message (simpleJpeg) added a 14 Kbyte binary

JPEG image, representing requests with a photograph

of a customer or product appended to a simple
message. This will provide some insights how

TDXML handles messages which are predominantly

containing binary opaque data.

In order to evaluate how well TDXML compares to

other commercially available encoding mechanisms,
the following three encoding mechanisms available in

the Microsoft .NET platform were used:

• SOAP: The .NET SoapFormatter Class
serialises and deserialises an object, or an entire

graph of connected objects, in SOAP format to

support remote procedure calls. This mechanism

is the target reference for TDXML to compare

with. The default Document/Literal encoding is

used in the tests.

• XML: ASP.NET uses the XmlSerialiser class to
encode XML Web service messages. Therefore, it

is appropriate to include this mechanism in the

test scenarios to verify that TDXML is able to

deliver performance that at least rivals or

outperforms the XMLSerialiser class in .NET.

• BINARY: The .NET BinaryFormatter Class
serialises and deserialises an object, or an entire

graph of connected objects, in binary format.
BinaryFormatter enables native .NET to .NET

application to perform remote procedure calls

using .NET’s internal serialisation. This is the

ultimate performance target for TDXML because,

in theory, it should be the fastest when compared

to other mechanisms under test.

The following performance measurements were

taken during the tests and used to evaluate

performance, resource usage and scalability: (1)

serialisation time; (2) deserialisation time; and (3)

message footprint.

3.2 Performance Result Analysis

A Dell computer was used to perform the tests. The

hardware and software configuration of the system

was:

• Dual 2.8GHz Intel Pentium4 processor

• 512Mbytes of memory

• Intel PRO/1000MT network card

• Microsoft Windows XP Professional SP2

• Microsoft .NET Framework 1.1

3.2.1Message Size Analysis

Files were used to capture the resultant message for

all test cases. The results are shown in. Table 1.

TDXML consistently outperforms SOAP and XML

encoding mechanism for all test cases. For short and

simple message types, it was observed that TDXML

produced the smallest message sizes amongst all other

mechanisms. In the medium and complex test cases, it

was found that the BINARY encoding mechanism

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

yielded smaller message sizes than TDXML by over

30%. This was due to the medium and complex test

messages containing a large number of repeated data

structures (20 in medium and 50 in complex). Just as

SOAP and XML, TDXML suffers from a flaw, that is,

having to attach a tag for every piece of serialised data
and attribute. One of the future enhancement tasks for

TDXML is to incorporate new measures to allow better

grouping of tags and data.

Table 1: Serialised message sizes produced by

different encoding mechanisms

TDXML SOAP XML Binary

121 675 204 122
Short

 458% 69% 1%

355 1647 751 512
Simple

 364% 112% 44%

4407 14082 8796 3245
Medium

 220% 100% -26%

11795 33073 25276 5911
Complex

 180% 114% -50%

20170 21735 20616 15310
SimJpeg

 8% 2% -24%

15176 N/A N/A N/A
JpegMIME

 43% 36% 1%

For the simpleJpeg test scenario, both SOAP and

XML serialisations generate the binary portion using

Base64 encoding. Two versions of TDXML serialiser

were programmed for the simpleJpeg message type:

one using Base64 encoding and another using the

MIME multipart attachment to encapsulate the JPEG

file with binary attachment. When using Base64

encoding to serialise the simpleJpeg test message, the

result showed little gain in using TDXML. It was

because the 14Kbyte JPEG file had dominated the test
message and Base64 encoding had increased the

message size by 33%. However, when using the MIME

multi-part attachment mechanism to serialise the

simpleJpeg message in TDXML, the resultant message

was reduced to a size that is even smaller than the

BINARY mechanism (15176 bytes versus 15310

bytes). This shows that the use of MIME in

conjunction with TDXML is a competitive alternative

for handling messages containing large portion of

binary data.

3.2.2Serialisation and Deserialisation Analysis

Specialised schema specific serialisation and

deserialisation handlers were developed to make use of

the direct access feature in TDXML. The .NET C#

delegate objects were used to define reference types

that can be used to encapsulate different schema

specific serialisation/deserialisation methods. Each

delegate object was associated with a specific TDXML

schema specific index and stored in a hash table ready

to be called during the serialisation and deserialisation

processes. The serialisation and deserialisation results

for all test scenarios are given in Figure 2.

TDXML outperforms SOAP and XML in both
serialisation and deserialisation performance for all test

message types. However, when TDXML is compared

to the BINARY encoding mechanism, the change in

size, complexity, and data content in a message affects

the performance landscape. TDXML is the leader for

the short (0.0426ms to perform a serialisation and

deserialisation) and simple (0.132ms to perform a

serialisation and deserialisation) message types.

TDXML outperforms: BINARY encoding by over

120% in short message type and 20% in simple
message type. TDXML outperforms SOAP encoding

by over 500%; and XML by over 200%. The
evaluation result confirms that the deserialisation

process in SOAP and XML took longer processing

time than the serialisation process. It is important to

note that TDXML was able to reduce the

deserialisation time that was much less than the

serialisation process for the short and simple test

scenarios.

When the test message size and complexity

increased, the performance of TDXML became slower

than BINARY encoding (10% difference in the

medium message type and 90% difference in the
complex message type). For the medium message type,

TDXML required 1.089ms (versus 0.917ms for

BINARY) to perform one serialisation and

deserialisation, and 3.852ms (versus 1.983ms for

BINARY) for the complex message type. TDXML

leads the SOAP encoding by over 500% and XML

encoding by 100% for the complex message type. It

was also observed that TDXML’s deserialisation

process for the medium and complex message types

took longer time than the corresponding serialisation

processes. This differs from the case shown in the

short and simple message types. This indicates that for
the medium and complex message types, TDXML

needs to incorporate further enhancement features to

achieve even better results. The reason for the

BINARY encoding mechanism being more efficient

than TDXML for the medium and complex message

scenarios is attributed to the fact that the resultant

TDXML encoded message sizes are 50% to 100%

larger than the equivalent BINARY encoding and thus,

TDXML requires more time to write (in serialisation)

and read (in deserialisation) the messages.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

Figure 2: Average serialisation and deserialisation time for different message types using different encoding

mechanisms

This also indicates that the copying of data to and

from the memory buffers becomes the bottleneck in

TDXML when dealing with large message size.

The simpleJpeg scenario was designed to study the

impact of encoding binary opaque data using TDXML.

Evaluation result shows that both the MIME and
Base64 versions of TDXML perform faster than SOAP

and XML but slower than BINARY encoding. Using

MIME attachment (0.786ms) in TDXML was able to

yield smaller resultant message and better performance

than using Base64 (1.41ms). This shows that when a

message is dominated by binary data, BINARY

encoding yields better performance than TDXML.

However, there is still a 100% gap between TDXML-

MIME and BINARY encoding. This indicates that

TDXML needs further enhancement in the aspect of

improving the speed of copying data in and out of

memory buffers.

4. Related Work
Some of the popular proposals for optimising the

performance of Web Services are: (a) Software

compression – There are many compression

techniques being proposed, such as Millau [7], Gzip,
and XMill [1, 6]. Although these compression

algorithms all produce high compression ratio, there

are concerns that the extra processing time required for

compressing and decompressing data streams may

outweigh the benefit of reduced network transit time

[15]. (b) Hardware accelerator – Many XML

hardware appliances are available in the market. The

ServerIronGT E-series Web Appliance manufactured

by Foundry Networks (http://www.foundrynet.com) is

an example that supports XML tag switching and

compression. (c) Binary metadata – The Portable

Binary I/O metadata (PBIO) technique of creating
efficient wire formats using Natural Data

Representation (NDR) [18] is an example of using

binary metadata on the wire, which is maintained by

the sender, then decoded by the receiver into its desired

form. (d) Using shorter tags – An example is the

Cross Format Schema Protocol (XFSP) proposed by

Serin [16] where elements and attributes are replaced

via a tokenisation scheme which preserves valid XML

document structure. (e) Binary XML- The examples

are Sun’s Fast Web Services [13] and Fast InfoSet [14]

proposals. However, there are concerns [12] about

issues of multiple binary representations (big or little
endian) and interoperability with existing standards

(eg. Infoset , and XML compression). (f) Caching –

An example is Devaram’s proposal [4] of using

parameterised caching on the client side. (g) Pull

Parsing (XPP) [17] and schema-specific parsers [3],

are techniques that improve the parsing efficiency of

an XML parser. They are starting to gain some

attention in the Web Services community. (h) SOAP

Message Transmission Optimization Mechanism

(MTOM) – It is one of the recent W3C standards to

meet the demand for integrating opaque data with
XML and addresses the requirement of compatibility

Short Messages

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TDXML SOAP XML Binary

T
im

e
 (

m
s

)

Deserialization

Serialization

Simple Messages

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TDXML SOAP XML Binary

T
im

e
 (

m
s

) Deserialization

Serialization

Medium Messages

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

TDXML SOAP XML Binary

T
im

e
 (

m
s

) Deserialization

Serialization

Complex Messages

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

TDXML SOAP XML Binary

T
im

e
 (

m
s

)

Deserialization

Serialization

Jpeg Messsages

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

TDXML

MIME

TDXML

Base64

SOAP XML Binary

T
im

e
 (

m
s

) Deserialization

Serialization

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

with the XML Infoset. The MTOM proposal is able to

selectively encode portions of a SOAP message using

XML-binary Optimised Packaging (XOP) [8] to

efficiently serialise XML Infosets containing binary

data.

5. Conclusion
This paper has presented a Table Driven XML

encoding mechanism which optimises the performance

of Web Services by using table structures to reduce the

overall message size, parsing, serialisation and

deserialisation overheads. The serialisation and

deserialisation behaviours of TDXML were analysed

by comparing it to a set of commercially available
encoding mechanisms. The evaluation results show

that:

(1) TDXML yields on average 100% smaller

message footprint than SOAP and XML for a

variety of message types;

(2) The serialisation speed of TDXML is at similar

level to the BINARY encoding (for messages

less than 500byte); and

(3) TDXML reduces the overall parsing and

serialisation time by over 500% when compared

to SOAP and over 200% when compared to
XML.

In conclusion, TDXML is an efficient encoding

mechanism which is able to improve the parsing,

serialisation and deserialisation performance of Web

Services. However, when comparing TDXML to a

BINARY encoding mechanism, there are certain areas

that need to be addressed in TDXML’s design: (1)

TDXML is weak in handling large volume of in-transit

data (revealed from the simpleJpeg message test case);

and (2) TDXML needs to improve the process in

handling repetitive data structures (revealed in the

complex message test case).

References

[1] Cai, M., Ghanderizadeh, S., Schmidt, R., et al. A
Comparison of Alternative Encoding Mechanisms for
Web Services. In Proceedings of the DEXA2002. 2002

[2] Chiu, K., Govindaraju, M., and Bramley, R.
Investigating the Limits of SOAP Performance for
Scientific Computing. In Proceedings of the 11 th IEEE
International Symposium on High Performance

Distributed Computing HPDC-11 2002 (HPDC'02).
Edinburgh, Scotland,p.246-254:IEEE, 2002

[3] Chiu, K. and Lu, W., A Compiler-Based Approach to
Schema-Specific Parsers for XML, Tech Report, No.
592, Indiana University, Feb 2004

[4] Devaram, K. and Andresen, D., SOAP Optimization via
parameterized client-side caching, Department of
Computing and Information Sciences, , Kansas State

University, 2003

[5] Dubuisson, O., ASN.1 - Communication between
heterogeneous systems. Elsevier-Morgan Kaufmann,
2000

[6] Ghandeharizadeh, S., Papadopoulos, C., Cai, M., et al.,
Performance of Networked XML-Driven Cooperative

Applications.
[7] Girardot, M. and Sundaresan, N. Millau: an encoding

format for efficient representation and exchange of
XML over the Web, February 15, 2001 (on-line)
Accessed 11 September 2003

 http://www9.org/w9cdrom/154/154.html
[8] Gudgin, M., Mendelsohn, N., Nottingham, M., et al.

XML-binary Optimized Packaging W3C

Recommendation 25 January 2005, (on-line) Accessed
15 February 2005

 http://www.w3.org/TR/xop10/
[9] Martin, B. and Jano, B., WAP Binary XML Content

Format W3C NOTE, W3C, 24 June 1999
[10] Nadalin, A., Kaler, C., Hallam-Baker, P., et al., Web

Services Security: SOAP Message Security 1.0 (WS-
Security 2004), OASIS, March 2004

[11] OSSNokalva OSS Nokalva Web Site, (on-line)
Accessed 20 July 2004

 http://www.oss.com/
[12] Pal, S., Marsh, J., and Layman, A. A Case against

Standardizing Binary Representation of XML. In
Proceedings of the Workshop on Binary Interchange of
XML Information Item Sets. 2003

[13] Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., et al.

Fast Web Services, August 2003 (on-line) Accessed 27
August 2003

 http://developer.java.sun.com/developer/technicalArticle
s/WebServices/fastWS/index.html

[14] Sandoz, P., Triglia, A., and Pericas-Geertsen, S. Fast
Infoset, June 2004 (on-line) Accessed 15 June 2004

 http://java.sun.com/developer/technicalArticles/xml/fasti
nfoset/

[15] Schmelzer, R. Will binary XML solve XML

performance woes?, 22 Nov 2004 (on-line) Accessed 24
November 2004

 http://searchwebservices.techtarget.com/tip/1,289483,sid
26_gci1027726,00.html

[16] Serin, E., Design and test of the cross-format schema
protocol (XFSP) for networked virtual environments.
Naval Postgraduate School: Montery, California. p. 133,
2003.

[17] Slominski, A. Home page of XML Pull Parser (XPP),
(on-line) Accessed 15 July 2003

 http://www.extreme.indiana.edu/xgws/xsoap/xpp/
[18] Widener, P., Eisenhauer, G., Schwan, K., et al. Open

Metadata Formats: Efficient XML-Based
Communication for High Performance Computing. In
Proceedings of the Tenth IEEE International
Symposium on High Performance Distributed

Computing-10 (HPDC-10). San Francisco, 2001

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: MACQUARIE UNIV. Downloaded on November 17, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

