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In Australian English rimes, coarticulation between coda /l/ and its preceding vowel has the 
potential to attenuate cues that contribute to phonological vowel contrast. Therefore, vowel-/l/ 
coarticulation may increase ambiguity between prelateral vowels. We used a vowel identification 
task to test the effect of vowel-/l/ coarticulation on vowel disambiguation in perception. Listeners 
categorized vowels in /hVd/ and /hVl/ contexts. Results showed reduced accuracy of vowels 
before coda /l/ compared to coda /d/, showing that coda /l/ increases vowel disambiguation 
difficulty. In particular, reduced perceptual contrast was found for the rime pairs /ʉːl-ʊl, æɔl-æl/ 
and /əʉl-ɔl/ (e.g., fool-full, howl-Hal, dole-doll). A second experiment tested the effect of reduced 
perceptual contrast on word recognition. Listeners identified minimal pairs contrasting key vowel 
pairs in the /CVl/ and /CVd/ contexts. Reduced accuracy and increased response time in /l/ 
contexts shows that coda /l/ hinders listeners’ ability to identify vowels. The implications of 
reduced perceptual vowel contrast for compensation for coarticulation and sound change are 
discussed.
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1. Introduction
A fundamental issue in speech perception is how fine and varied phonetic details affect 
the identification and categorization of speech into higher-level units. An intrinsic and 
pervasive source of variation in speech is coarticulation (Lindblom, 1963; Iskarous et 
al., 2013). In order to map coarticulated speech to higher level units, listeners must 
recognize which cues or properties are the result of coarticulation, and take these effects  
into account when perceiving speech (Mann & Repp, 1980; Fowler, 1986; Gaskell & 
Marslen-Wilson, 1998; Fowler, 2005; Beddor, McGowan, Boland, Coetzee, & Brasher, 
2013; Harrington, Kleber, & Stevens, 2016; Zellou, 2017).

Several studies have examined how the coarticulatory effects of nasal consonants on 
vowels are perceived in English (e.g., Beddor & Strange, 1982; Beddor, 2009; Beddor 
et al., 2013; Zellou, 2017). These studies found that on the one hand, listeners can 
perceive fine-grained phonetic details, as they can differentiate between oral and nasal 
vowels, and between degrees of nasalization (Beddor & Strange, 1982; Beddor et al., 
2013). On the other hand, listeners can compensate for the coarticulatory influence of 
nasals by attributing vowel nasalization to its consonantal source. This ensures that nasal 
coarticulation does not hamper vowel perception (Beddor, 2009; Beddor et al., 2013; 
Zellou, 2017). However, English does not have a phonemic contrast between oral and 
nasal vowels, and a nasalized vowel typically only appears in a predictable pre-nasal or 
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post-nasal environment. Therefore vowel-nasal coarticulation does not affect contrastive 
vowel cues in English and English listeners can attribute vowel nasalization as a cue to the 
following consonant instead of interpreting it as a cue to vowel identity.

Another segment that has been shown to have a strong coarticulatory influence on 
the preceding vowel is dark coda /l/ (Recasens, 2002; Cox & Palethorpe, 2007). Unlike 
nasals, coda /l/ affects cues that are contrastive in the English vowel inventory, as it 
reduces spectral cues to vowel contrast (Palethorpe & Cox, 2003; Szalay, Benders, Cox, 
Palethorpe, & Proctor, 2021; Wade, 2017). For instance, in Australian English, acoustic 
vowel contrast is reduced in the prelateral context, in particular between the vowels /iː-ɪ/ 
(heel-hill), /ʉː-ʊ/ (fool-full), /æɔ-æ/ (howl-Hal), and /əʉ-ɔ/ (dole-doll)1 (Palethorpe & Cox, 
2003; Szalay et al., 2021). Therefore the quality of the nucleus in these words can be 
attributed to the coda but may also be interpreted as an intrinsic quality of the vowel. 
That is, coda /l/ potentially has the ability to mask acoustic cues used by listeners in 
vowel identification and word recognition.

The goal of this study is to investigate in new detail how vowel-lateral coarticulation 
affects speech perception by examining listeners’ ability to disambiguate coarticulated 
phonemes, in particular, to examine whether vowel-lateral coarticulation affects the 
perception of phonologically contrastive cues. We hypothesized that if coarticulation with 
coda /l/ reduces perceptually contrastive vowel cues, listeners’ ability to discriminate 
prelateral vowels would be hindered. If vowel-/l/ coarticulation reduces contrastive vowel 
cues, the effect would be evident through an increased difficulty in vowel disambiguation 
in the pre-/l/ context compared to a pre-/d/ context. We expected that vowels that are 
the most spectrally similar in the prelateral context may be most difficult to disambiguate.

We tested this hypothesis in two experiments. In the first experiment we found that 
/l/-final rimes were disambiguated less easily than /d/-final rimes; in particular, the 
spectrally similar pairs /ʉːl-ʊl, æɔl-æl, əʉl-ɔl/ (e.g., fool-full, howl-Hal, dole-doll) were 
poorly discriminated compared to other /l/-final target-competitor pairs and to /d/-final 
minimal pairs contrasting the same vowels. The limitation of our first experiment was that 
it used a combination of real and non-words.

Because identification of ambiguous phonemes is facilitated when the target is 
contained in a lexical item rather than a non-word (Ganong, 1980; Magnuson, McMurray, 
Tanenhaus, & Aslin, 2003), we conducted a second experiment using only real words to 
examine if the contrast-reducing influence of lateral codas also affects lexical access to 
/l/-final words. We hypothesized that if coda /l/ reduces the contrastive cues necessary 
for vowel disambiguation, listeners will remain unable to disambiguate vowels even when 
presented with real words. For example, they may map the acoustic signal of pool to 
the lexical item pull. We found that listeners were less accurate and slower at accessing 
monosyllabic words within the pairs /iːl-ɪl, ʉːl-ʊl, æɔl-æl/ and /əʉl-ɔl/ compared to their 
/d/-final counterparts. These results suggest that some members of /l/-final minimal pairs 
may be inherently acoustically ambiguous, which limits listeners’ ability to disambiguate 
between them.

1.1. Effect of phonetic context on phoneme identification
The identification of speech segments requires listeners to factor out the influence of 
surrounding segments in order to recover the intended speech sound (Mann, 1980; 
Fowler, 1986; Zellou, 2017). Listeners may interpret cues according to their contexts and 
may perceive the same ambiguous signal as different segments under different contextual 

 1 The phonemic symbols used in this work are based on the system outlined in Cox and Palethorpe (2007) for 
describing Australian English.
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conditions (Mann & Repp, 1980; Fowler, 1984; Gaskell & Marslen-Wilson, 1998; Kleber, 
Harrington, & Reubold, 2012; Zellou, 2017).

In the perception of consonants, when hearing a fricative that is ambiguous between 
/s/ and /ʃ/, listeners reported perceiving /s/ when the fricative was followed by a 
rounded vowel, and reported perceiving /ʃ/ when it was followed by an unrounded 
vowel (Mann & Repp, 1980). This is because in a fricative+unrounded vowel sequence 
listeners attribute the low frequencies to the fricative and categorize it as /ʃ/, whereas in 
a fricative+rounded vowel sequence listeners attribute the same low frequencies to lip 
rounding and categorize the fricative as /s/ (Mann & Repp, 1980; Smits, 2001; Mitterer, 
2006). Similarly, a segment that is ambiguous between /d/ (with high F3 onset) and 
/ɡ/ (with low F3 onset) is more likely to be perceived as /ɡ/ when it is preceded by 
/l/ than when it is preceded by /ɹ/ (Mann, 1980). If listeners attribute the lowered F3 
to the stop in the /l/+stop sequence they would categorize the stop as /ɡ/, whereas a 
lowered F3 attributed to /ɹ/ in a /ɹ/+stop sequence may lead listeners to classify the 
stop as /d/ (Mann, 1980). These effects might not be specific to speech, as under certain 
circumstances, a preceding low tone (corresponding to /ɹ/) or high tone (corresponding 
to /l/) have the same effect (Lotto & Kluender, 1998; Fowler, Brown, & Mann, 2000).

Consonantal context has also been shown to affect vowel categorization. For example, 
listeners accept a vowel with a relatively high F2 as /ʊ/ in the fronting /s_t/ context, 
whereas they categorize the same vowel as /ɪ/ in the non-fronting /w_l/ context despite 
the fact that prototypical /ʊ/ has a low F2 and prototypical /ɪ/ has a high F2 (Kleber 
et al., 2012). These studies suggest that listeners attribute coarticulatory information to 
the influencing segment and factor coarticulatory effects out in the perception of the 
affected segment.

There are instances of coarticulation that lead to assimilation, for example /p/ in the 
phrase top tag can be realized as [t] (K. N. Stevens & Keyser, 2010). Listeners are better able 
to attribute segmental variation to context in real words, such as freight bearer, realized 
with a final /p/ instead of a /t/ in freight, than in nonwords, such as preip bearer (Gaskell 
& Marslen-Wilson, 1998). Dutch listeners also compensate for coarticulation in the Dutch 
phrase tuin bank [garden bench] pronounced with a final /m/ (Mitterer & Blomert, 2003). 
However, this cannot be attributed to lexical effects, as German listeners also compensate 
for coarticulation as they perceived an /n/ in tuim bank despite not being aware that 
tuin means garden but tuim is a not a word (Mitterer & Blomert, 2003). These studies 
show contrasting results as to whether listeners integrate top-down lexical information in 
phoneme perception.

The ability to factor out the influence of surrounding segments allows listeners to 
recover phoneme categories and category membership despite contextual change to the 
signal. For instance, /ɡ/ has an acoustically different release burst between /ɡi/ and /ɡu/, 
but listeners perceived acoustically different /ɡ/ sounds in the appropriate coarticulatory 
context as more similar to each other than acoustically identical /ɡ/ sounds when one of 
them was originally produced in a different phonetic context (Fowler, 1984). Similarly, 
English listeners perceived oral and nasal vowels as different when nasality cannot be 
attributed to context (e.g., nasal vowels in the context of oral consonants or in isolation) 
and as similar when nasality can be attributed to context (e.g., nasal vowels in the context 
of nasal consonants) (Beddor & Krakow, 1999).

Coarticulation also has the potential to affect contrastive cues to vowel identity and reduce 
acoustic contrast. It is not clear from these studies whether listeners can disambiguate 
coarticulated phonemes in which coarticulation has affected contrastive cues to phoneme 
identity. This may create a perceptual target that is inherently ambiguous, as listeners 
may attribute cues to either the segment undergoing coarticulation or to the segment 
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causing it. An environment where these interactions can be explored in more detail is 
lateral-final rimes, because vowel-lateral coarticulation affects contrastive vowel cues, 
reducing acoustic vowel contrast and making vowels potentially perceptually ambiguous 
in the prelateral context in natural speech.

1.2. The effect of coda /l/ on Australian English vowels
General Australian English (AusE) uses a large vowel inventory consisting of 18 stressed 
vowels and schwa (Figure 1) (Cox & Fletcher, 2017). The AusE vowel inventory utilizes 
both spectral and durational contrasts, with phonemic vowel length contrast for spectrally 
similar pairs (Harrington, Cox, & Evans, 1997; Cox & Palethorpe, 2007). For instance, the 
vowel pairs /ɐː-ɐ, eː-e/ (e.g., card-cud, shared-shed) primarily contrast in length (Cox & 
Palethorpe, 2007), and /iː-ɪ, ʉː-ʊ/ are realized with both durational and spectral contrast 
(Cox, 2006). In addition, there are spectrally similar diphthong-monophthong pairs in 
which one of the diphthongal targets coincides with a monophthong, such as /æɔ-æ, 
æɪ-æ/ in loud-lad, laid-lad, and /əʉ-ʉː, æɔ-ɔ/ in boat-boot, pout-pot (Cox, 1999). As a result, 
some AusE vowel pairs share spectral features.

English coda /l/ is typically realized as a dark [ɫ], articulated with a lowered and 
retracted tongue dorsum, and an alveolar tongue tip gesture (Sproat & Fujimura, 1993). 
As the tongue dorsum gesture of [ɫ] may start during the vowel production, [ɫ] favours 
anticipatory V-[ɫ] coarticulation, leading to the backing and the lowering of the vowel 
(Recasens, 2002; Lin, Palethorpe, & Cox, 2012).

There are large acoustic differences between preobstruent and prelateral vowel allophones 
in AusE. Diminished vowel dispersion in the F1-F2 plane and reduced contrast between 
certain vowel pairs is characteristic of prelateral allophones (Figure 2). Diminished vowel 
dispersion is the result of the backing of the front vowels: Significantly lowered F2 was 
found for /iː, ɪ, e, ɐ, ɔ, ʉː, ɜː/ in prelateral environments (Palethorpe & Cox, 2003; Cox & 
Palethorpe, 2004). Prelateral vowels show overall reduced acoustic contrast compared to 
their preobstruent counterparts. In particular, the members of the pairs /iː-ɪ, ʉː-ʊ, æɔ-æ/ 
and /əʉ-ɔ/ might be inherently acoustically ambiguous in the prelateral environment, as 

Figure 1: The AusE vowel inventory. Figures reproduced from Cox and Fletcher (2017).
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machine learning algorithms trained on dynamic formant data and duration data were 
unable to discriminate between the members of these pairs (Szalay et al., 2021). Acoustic 
contrast between /ʉː-ʊ/ and /əʉ-ɔ/ is partially neutralized before a coda /l/, due to 
the lowering of the second formant of /ʉː/ (Palethorpe & Cox, 2003; Cox & Palethorpe, 
2004; Szalay et al., 2021). Contrast between /æɔ-æ/ is partially neutralized before coda 
laterals, as /l/ and the second element of the diphthong overlap substantially. However, 
Palethorpe and Cox (2003) and Szalay, Benders, Cox, and Proctor (2018) found that 
durational contrast was maintained between the vowel pairs in the prelateral context. Cox 
(2006) did not find acoustic contrast reduction between the targets of the vowels /iː-ɪ/; 
however, acoustic contrast between the formant trajectories of /iː-ɪ/ was reduced due 
to reduction in the onglide of /iː/, which is one of the differentiating features between 
the two vowels. In addition, both /iː/ and /ɪ/ gain a schwa-like offglide in the prelateral 
context, which reduces acoustic contrast between their formant trajectories (Palethorpe & 
Cox, 2003; Szalay et al., 2021). As a result of the vowel-lateral coarticulation, prelateral 
allophones of AusE vowels differ substantially from their preobstruent counterparts in 
both spectral and durational characteristics (Palethorpe & Cox, 2003; Szalay et al., 2021).

Reduced dispersion of vowels in the F1-F2 plane in the prelateral environment may 
hinder vowel perception, as a more dispersed F1-F2 vowel space has been demonstrated 
to facilitate intelligibility in clear speech (Bradlow, Torretta, & Pisoni, 1996; Ferguson & 
Kewley-Port, 2007; Neel, 2008; but see J. C. Krause & Braida, 2004 for evidence to the 
contrary). Reduced dispersion may diminish spectral contrast and reduce intelligibility; 
for example, American English listeners confused the spectral neighbours /ɑ-ʌ/ and /ɛ-æ/ 
but never /i-ʌ/ or /ɛ-u/ (Neel, 2008). Therefore reduced vowel dispersion caused by 
vowel-/l/ interactions might also increase the difficulty of vowel, and thus potentially 
word identification.

Studies on the perception of English lateral-final rimes have shown that vowel-lateral 
coarticulation helps listeners identify /l/, but hinders identification of certain vowels. 

Figure 2: Monophthong targets before coda /d/ and coda /l/ in the F1-F2 vowel plane. 
Monophthongs before coda /l/ show reduced vowel contrast and smaller vowel dispersion 
compared to monophthongs before coda /d/. Figure reproduced from Palethorpe and Cox 
(2003).
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Anticipatory vowel-lateral coarticulation allowed British English listeners to reliably 
identify /l/ in belly when /l/ and the following sounds were replaced by white noise 
(West, 1999). In contrast, listeners could not identify /l/, when /l/ and the preceding 
vowel were replaced by white noise: Listeners could identify belly from [be##], but not 
from [b##i] (West, 1999). Vowel identification has been examined in /l/-triggered vowel 
mergers in several dialects of English (Thomas & Hay, 2005; Loakes, Clothier, Hajek, 
& Fletcher, 2014b; Wade, 2017). Listeners from Melbourne, Australia showed a limited 
ability to distinguish /el/ from /æl/ in a word identification task with minimal pairs (e.g., 
Alan-Ellen) (Loakes, Hajek, & Fletcher, 2010a, 2010b, 2010c, 2011; Loakes, Graetzer, 
Hajek, & Fletcher, 2012; Loakes, Clothier, Hajek, & Fletcher, 2014a; Loakes et al., 2014b). 
Some speakers of New Zealand English were able to distinguish minimal pairs differing 
in /el/ and /æl/ despite merging /el-æl/ in production (Thomas & Hay, 2005). In Ohio 
English, listeners could distinguish spectrally merged /oʊl-ul/ (e.g., pole-pull) and /ul-ʊl/ 
(e.g., pool-pull) using durational cues, but listeners from Vermont could not (Wade, 2017).

1.3. Experimental considerations
Production and perception studies have demonstrated that vowel-lateral coarticulation 
reduces acoustic contrast between certain vowels in unmanipulated speech. However, it is 
not clear if and how listeners can disambiguate vowels when acoustic contrast is reduced. 
AusE lateral-final rimes may provide insights into the issue of whether reduced acoustic 
contrast leads to a perceptually ambiguous vowel signal or whether listeners perceive 
acoustically ambiguous vowels according to their coda-context.

Previous questions regarding compensation for coarticulation and context-dependent 
perception have been successfully addressed with spliced stimuli and phonetic vowel 
continua (e.g., Mann & Repp, 1980; Fowler, 1984; Kleber et al., 2012; Zellou, 2017). 
However, both splicing and creating a synthetic continuum are near-impossible to 
implement for AusE vowel-lateral coarticulation, due to the large acoustic differences 
between preobstruent and prelateral vowel allophones unique to AusE (Appendices B  
and D).

Previous work has used splicing to show that identical acoustic signals may be interpreted 
differently given the context (e.g., Fowler, 1984; Zellou, 2017). One could similarly aim 
to investigate whether the interpretation of prelateral and preobstruent vowel allophones 
is dependent on the coda, by presenting listeners with a prelateral vowel spliced into a 
preobstruent context and a preobstruent vowel spliced before a lateral coda. The first step 
to creating such spliced stimuli would be to identify the vowel-coda boundaries in speakers’ 
natural productions. While identifying a vowel-obstruent boundary is straightforward, 
there is no discernible boundary between vowels and the following coda /l/. This is 
especially true for back vowels and backing diphthongs, whose formant characteristics 
are similar to those of dark /l/. Moreover, even if prelateral vowels are successfully 
isolated, the acoustic differences between prelateral and preobstruent vowels are so large 
that a prelateral allophone spliced into the preobstruent context would sound noticeably 
different from the standard AusE production, and therefore, phonetically unnatural to 
AusE listeners. Listeners’ response to spliced stimuli would, therefore, not inform our 
understanding of the perception of prelateral vowels in AusE.

Other work has employed synthetic continua to address questions of context-dependent 
boundary shifts (e.g., Mann & Repp, 1980; Kleber et al., 2012). A potentially interesting 
question regarding vowel-lateral coarticulation would be whether the perceptual boundary 
location between two vowels depends on whether the vowels precede an obstruent or a 
lateral coda. As acoustic contrast is reduced between prelateral compared to preobstruent 
vowels, the unambiguous endpoints of the synthetic vowel continua would need to be 
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the preobstruent vowel allophones, to be followed by either a synthesized lateral or a 
synthesized obstruent coda. However, continua based on preobstruent allophones would 
not appropriately represent the prelateral vowels. Firstly, synthesized preobstruent 
allophones would sound phonetically unnatural in the prelateral context. For example, 
in adult female speech /ʉː/ (e.g., food) is realized with an F2 of approximately 2200 Hz 
in the preobstruent position, but with an F2 of approximately 980 Hz in the prelateral 
position (Szalay et al., 2021). An /ʉː/ with a high F2 is typically not followed by a lateral 
coda in standard AusE and the synthetic stimuli would sound geographically marked 
or even phonetically unnatural to listeners. Secondly, some prelateral allophones would 
not even occur on the continuum between endpoints that represent their preobstruent 
counterparts. For example, the preobstruent allophones [iː] and [ɪ] as well as the linearly 
interpolated exemplars between these two endpoints would never occur before [ɫ], as 
/iː-ɪ/ are always realized with a schwa-like offglide before coda /l/, as [iːəɫ] and [ɪᵊɫ]. 
Such a schwa-offglide would not be present in a continuum between preobstruent vowels. 
In addition to prelateral /iː-ɪ/ vowels without a schwa-offglide sounding phonetically 
unnatural, such stimuli would not actually test the perception of prelateral allophones. To 
appropriately represent prelateral vowels in a synthesized continuum, one would need to 
synthesize different endpoints for the preobstruent and prelateral contexts: Preobstruent 
vowel allophones would be used as unambiguous endpoints in the obstruent-final continua 
and prelateral vowel allophones in the lateral-final continua, resulting in an [iːd-ɪd] and 
an [iːəɫ-ɪəɫ] continuum. However, this would make the endpoints of the prelateral and 
preobstruent continua incomparable and therefore would not inform our understanding 
of boundary shifts.

Thus, we chose not to address questions of compensation for coarticulation and not to 
use manipulated stimuli. Instead, we focus on whether acoustic contrast reduction leads 
to perceptual contrast reduction in naturally occurring productions. We address these 
questions by comparing listeners’ ability to discriminate prelateral vowels to their ability 
to discriminate preobstruent vowels in two experiments using unmanipulated stimuli in 
which acoustic vowel contrast is naturally reduced in prelateral context. We discuss our 
results in light of compensation for coarticulation.

2. Experiment 1: Disambiguation of /l/-final rimes
We tested perceptual contrast reduction in prelateral vowels using a rime disambiguation 
task. Participants were asked to identify an aurally-presented target by selecting one of 
two orthographic representations. Candidate pairs consisted of an exhaustive pairing of 
all 16 possible stressed /l/-final rimes in AusE and an exhaustive pairing of the same 
16 stressed vowels in /d/-final rimes. Comparing accuracy and reaction time (RT) of 
responses to /d/- and /l/-final target words allowed us to test the extent to which vowel-
lateral coarticulation affects vowel disambiguation. This task also allowed us to identify 
the most easily confused vowel pairs. We hypothesized that if vowel-lateral coarticulation 
masks cues that are vital to vowel disambiguation, listeners would perform worse on 
/l/-final rimes than on /d/-final rimes. We also predicted that /l/-final contexts would 
have a particularly strong negative effect on accuracy and reaction time compared to 
/d/-final contexts for vowel pairs that have been shown to exhibit reduced contrast in 
/l/-final contexts, namely /ʉː-ʊ, æɔ-æ, əʉ-ɔ/ (e.g., fool-full, howl-hal, dole-doll).

2.1. Methods
2.1.1. Participants
Thirty (F = 29, M = 1, bilingual = 19, age = 19–56, mean = 24.16) listeners of AusE (born 
in Australia or migrated to Australia before the age of 2) participated in the experiment. 
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Participants were undergraduate students of linguistics at Macquarie University and 
received course credit for participation. All participants had linguistic training but were 
naive to the purpose of the experiment. None of the participants reported any current 
hearing, speaking, or reading difficulties.

2.1.2. Materials
The stimuli consisted of 16 AusE vowels embedded in /hVd/ and /hVl/ words. The vowels 
/ɪə/ and /eː/ were excluded as they never appear before final /l/. When a combination of 
/h/+V+/d/ or /h/+V+/l/ did not yield an existing word, the corresponding nonword was 
used. The two alternatives in the forced-choice task were the orthographic representations 
of the candidates spelled uniformly with an initial h. Nonwords were spelled according 
to English spelling and judged by native speakers of AusE for transparency (Appendix A).

Stimulus materials were elicited from a 21-year old monolingual female university 
student born in Australia to Australian-born parents and recorded with an AKG C535 EB 
microphone at 44.1 kHz sampling rate in a sound treated studio in 2006. The stimuli were 
amplitude-normalized, digitized as 16 bit WAV files, and truncated to have one-second 
silence before and after the word. Mean duration of target words in the /d/ condition was 
486 ms (range = 320–650 ms), and 528 ms (range = 450–640 ms) in the /l/ condition.

2.1.3. Procedure
Participants familiarized themselves with the targets and they were introduced to the 
experiment with a short practice session, disambiguating the nonword targets. Feedback 
was provided after each trial. Familiarization and practice were followed immediately by 
the experimental phase.

Participants were seated in front of a computer monitor located at eye height at a distance 
of 50 cm and wore Sennheiser 380 Pro headphones adjusted to their comfortable listening 
level. Participants were instructed to respond as quickly and accurately as possible. To 
begin each trial, a fixation cross was displayed in the centre of the screen. After 500 ms 
the two candidate items were displayed in lower case orthography, arranged horizontally, 
and presented in different coloured boxes. After 1500 ms the target word started playing, 
while the candidates remained on screen. Participants had 2000 ms from audio onset to 
select the candidate they heard (Figure 3). Selections were made with a Chronos button 
box whose input keys mapped to the colours on the screen. The experiment moved on 

Figure 3: Structure of a trial. i. Fixation; ii. Presentation of response alternatives; iii. Audio stimulus 
presentation.
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to the next trial when participants responded. If participants did not answer within 2000 
ms, a warning message let them know that they were too slow and they were instructed 
to press a button to continue. The experiment did not proceed to the next trial until the 
participants responded.

Each participant was tested either on 16 /d/-final targets and 15 competitor candidates 
or on 16 /l/-final targets and 15 competitor candidates, creating a between-participant 
design. Target and competitor pairs were repeated in three blocks, once per block, with a 
10-second forced break between the blocks. Each participant was exposed to 240 (items) 
× 3 (repetitions) = 720 trials. In half of the trials, the target candidate was presented 
on the right, and in the other half on the left. Trials were randomized within the blocks. 
After the experiment, participants reported whether they found any of the words ‘unusal’ 
or ‘difficult’.

2.1.4. Analysis
Responses to 30 (participants) × 720 (trials) = 21,600 trials were collected. Sixty-
three observations, including all 45 trials with hill as target and heel as competitor, were 
excluded from the analysis due to errors in stimulus presentation. Trials in which response 
times were faster than 210 ms (Woods, Wyma, Yund, Herron, & Reed, 2015) or beyond 
mean±2 SD of the participant (Ratcliff, 1993) were excluded, leaving a total of 20,413 
trials (94.8%) for the analysis.

Generalized Linear Mixed-Effect Models (GLMMs) were implemented using glmer() 
function in the lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015; R Core Team, 
2018). Response accuracy was analyzed using the logistic link function, and reaction 
time data was analyzed using the logarithmic link function because the distribution of 
RT was right-skewed and followed a log-normal distribution (Figure 4). Convergence 
was estimated using the BOBYQA (Bound Optimization BY Quadratic Approximation) 
optimizer and an increased number of maximum iterations (Powell, 2009). LmerTest 
package (Kuznetsova, Brockhoff, & Christensen, 2017) was used to calculate p-values 
using Satterthwaite’s degrees of freedom method.

To examine the effect of coda /l/ on accuracy and speed of rime disambiguation, we 
constructed two GLMMs, one with the dependent variable Accuracy and another with RT 

Figure 4: Distribution of reaction times (ms) for correct responses. Black bars: Coda /d/ condition. 
Grey bars: Coda /l/ condition.
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of correct responses. The independent variables were Coda (treatment coded, comparing 
/l/ to the baseline /d/) and Lexical Status of Target (deviation coded, comparing real 
words and non-words to the grand mean). The independent variables Coda and Lexical 
Status were interacting. The models included a random by-participant intercept but not 
a by-participant random slope for the effect of Coda, as the experiment had a between-
participant design. To examine the speed-accuracy trade-off between the two coda 
conditions, we constructed a third GLMM with the dependent variable RT, including RT of 
both correct and incorrect responses. The independent variables were Coda (interacting), 
Response Accuracy (interacting), and Lexical Status of Target (non-interacting); the 
model included a random by-participant intercept but not a by-participant random 
slope as the experiment had a between-participant design. Coda and Response Accuracy 
were treatment-coded so that the intercept was the RT of incorrect responses in the /d/ 
condition. To shed light on how the pairing of target and competitor vowels affects rime 
disambiguation, we used agglomerative hierarchical cluster analysis with Ward’s method 
(Ward, 1963). Hierarchical cluster analysis takes the individual vowels as single-element 
clusters and at each step merges two clusters into a group (a cluster) in such a way 
that the members of one cluster are maximally similar and the members of two separate 
clusters are maximally dissimilar.

2.2. Results
2.2.1. Effects of Coda
Rimes ending in /l/ were disambiguated significantly less accurately (β = –0.58, z0.28 = 
–2.8, p = 0.04) and non-significantly more slowly (β = 0.09, t0.05 = 1.67, p = 0.1) than 
/d/-final rimes (Figure 5).2 Real words were disambiguated more accurately (β = 0.18, 
z0.07 = 2.65, p < 0.001), and quickly (β = –0.01, t0.002 = –6.07, p < 0.001) than the grand 
mean.

The exploration of the speed-accuracy trade-off showed that RT of incorrect responses 
was slower in the /l/ condition than in the /d/ condition (β = 0.13, t0.06 = 2.17, p = 
0.02). RT was slower for correct responses than for incorrect responses within the /d/ 
condition β = 0.04, t0.02 = 2.19, p = 0.038). The difference between the RT of correct and 
incorrect responses was significantly smaller in the /l/ condition than in the /d/ condition 

 2 RT estimates are reported as log-normalized ms.

Figure 5: Effect of Coda /l/ (grey) compared to Coda /d/ (black) on response accuracy and time.
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(β = –0.04, t0.02 = –1.98, p = 0.047) (Figure 6). Real words were disambiguated more 
quickly (β = –0.02, t0.002 = –11.57, p < 0.001) than nonwords.

2.3. Effect of Target and Competitor vowels
The effect of Target and Competitor vowels was examined using agglomerative hierarchical 
cluster analysis with Ward’s method (Ward, 1963), based on a confusion matrix of target- 
and competitor vowels (Figure 7). Vowels that form a dyad in Figure 7 are vowels which 
were confused the most often when paired as target and competitor. The vertical location 
of the nodes indicates confusability: The lower a node is located, the higher the percentage 
of incorrect responses.

Target and competitor vowels were most frequently confused when the two vowels 
shared a similar place of articulation (vowel frontness and height). Long-short vowel pairs 
were the hardest to disambiguate (e.g., /iː-ɪ/ and /ɐː-ɐ/) in the /d/ condition. In the /l/ 
condition, the vowel pairs /ʉː-ʊ, æɔ-æ/ and /əʉ-ɔ/ were easily confused; however, this 
analysis does not establish whether articulatory similarity has a statistically significant 
effect on vowel disambiguation. Comparing the clusters between the /d/ and the /l/ 

Figure 6: Speed-accuracy trade-off. Top panel: RT in the Coda /l/ condition. Bottom panel: RT in 
the Coda /d/ condition. Black: RT of incorrect answers. Grey: RT of correct answers.

Figure 7: Perceptual vowel similarity based on rime confusion: Closer clustering signals higher 
confusion rates.
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condition shows that the rimes were harder to disambiguate in the /l/ condition, as two-
member vowel clusters are separated earlier from other clusters, that is, the nodes are 
located lower in the /l/ condition.

2.4. Discussion
The aim of Experiment 1 was to examine the influence of coda lateral coarticulation 
on listeners’ ability to disambiguate vowel contrasts. As predicted, these data revealed 
that vowel discrimination is significantly less accurate in prelateral than in preobstruent 
environments. Lower accuracy in the /l/ condition is consistent with the hypothesis 
that coda /l/ reduces perceptual vowel contrast. Listeners were not overall slower in 
disambiguating /l/ final rimes. However, incorrect responses were faster than correct 
responses in the /d/, but not in the /l/-condition, indicating a speed-accuracy trade-off for 
the former, but not for the latter. The presence of a speed-accuracy trade-off is consistent 
with a ʻfast-guessʼ model of RT that argues that decisions made quickly are guesses and 
therefore less likely to be accurate whereas decisions based on evidence are slow and 
highly accurate (Ollman, 1966; Yellott Jr, 1971). That is, incorrect answers are likely to 
be the result of fast guesses in the /d/ condition; however, when listeners allocated more 
time to make a decision they could disambiguate the vowels correctly. In contrast, we 
found no evidence for a speed-accuracy trade-off in the /l/-condition due to the increased 
RT of the incorrect responses, indicating that the incorrect answers were the result of 
processing difficulties, not of insufficient time taken to process the input. This suggests 
that when not opting for a fast-guess, listeners allocated the same amount of time to 
disambiguate the rime in both conditions; however, this time was not sufficient to make 
accurate decisions in the /l/ condition. That is, listeners’ incorrect responses are the result 
of insufficient time in the /d/ condition, whereas in the /l/ condition they are the result 
of increased difficulties in vowel disambiguation.

We attribute the increased difficulty in vowel disambiguation in the pre-/l/ context to 
the coarticulatory influence of /l/ on the vowel. In the stimuli, vowel-/l/ coarticulation 
led to spectral contrast reduction, consistent with findings of Palethorpe and Cox (2003) 
and Szalay et al. (2021) (see Appendix B for the formant trajectories of the most confused 
rimes). The overall negative effect of coda /l/ on vowel disambiguation indicates that 
coda /l/ masks some of the acoustic cues listeners rely on for discriminating between 
members of several prelateral vowel pairs.

We also examined the effects of Target and Competitor Vowel, expecting that spectrally 
similar vowels would be more likely to be confused with each other. This expectation 
was borne out both in the /d/ and the /l/ condition, as the most confused vowel pairs are 
similar to each other in place of articulation and formant trajectories, such as /ʉː-ʊ, æɔ-æ, 
əʉ-ɔ, oɪ-ɔ/. This is not surprising in the /d/ condition, as English listeners are only likely 
to confuse spectrally similar vowels (Neel, 2008). However, English listeners have been 
shown to give more weight to length cues when spectral differences are inherently smaller 
(Bennett, 1968) or not available any more due to a contextual merger (Wade, 2017). 
This does not seem to be the case in our data: Perceptual similarity between /ʉː-ʊ, æɔ-æ, 
əʉ-ɔ/ increased as spectral differences became smaller in the /l/ condition, even though 
the vowels within these pairs differed in length (Appendix B). The high confusion rate of 
/ʉː-ʊ, æɔ-æ/ and /əʉ-ɔ/ shows that listeners interpret the coarticulatory effects of /l/ as 
an intrinsic property of the vowel and as a vowel cue, and not as a cue to the following 
consonant. This shows that vowel-/l/ coarticulation interferes with listeners’ ability to 
map the signal to higher level units and disambiguate the rime.
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A limitation of Experiment 1 was the nature of the task, which required listeners to 
map an auditory signal to a mixture of orthographically presented real words and non-
words. Real-word status, word frequency, and familiarity all affect word recognition 
(Rubenstein, Garfield, & Millikan, 1970; Forster & Chambers, 1973; Segui, Mehler, 
Frauenfelder, & Morton, 1982; Meunier & Segui, 1999). In addition, listeners were not 
exposed to variation in the coda, as listeners were assigned to either the /l/ or the /d/ 
condition. A lack of attention to the codas, which was predictable for all items, thus might 
have been partly responsible for the observed inefficient compensation. In Experiment 2, 
we used a word recognition paradigm to test whether vowel-lateral coarticulation affects 
how listeners compensate for context during lexical processing of words. Experiment 2 
required the processing of the entire word and also presented words ending in /d/ and /l/ 
to all participants to draw participants’ attention to the coda.

3. Experiment 2: Word recognition
We examined listeners’ recognition of /l/-final words contrasting /iː-ɪ, ʉː-ʊ, æɔ-æ/ and /əʉ-ɔ/ 
to assess whether listeners can identify prelateral vowels when required to process the 
information lexically. Participants listened to words contrasting the vowel pairs that had been 
identified as the most confusable in Experiment 1 (i.e., /ʉː-ʊ, æɔ-æ, əʉ-ɔ/ and in addition 
/iː-ɪ/, as their pre-/l/ allophones have acoustically similar offglides) (Palethorpe & Cox, 2003) 
to determine how listeners map the acoustic signal of /CVl/ minimal pairs to lexical items.

3.1. Methods
3.1.1. Participants
Forty-six female native speakers of Australian English, born in Australia to Australian-
born parents (monolingual = 33, age = 18–40 years, mean = 21.5) participated in 
the experiment. Participants received course credit or $15 for participation. None of the 
participants reported any current hearing, speaking, or reading difficulties.

3.1.2. Materials
The stimuli consisted of 32 unique CVC targets and 38 unique (C)V(C) fillers. For 
the 32 targets, 16 minimal pairs were chosen which contrasted the four vowel pairs 
(/iː-ɪ, ʉː-ʊ, æɔ-æ, əʉ-ɔ/), with two sets of minimal words per coda and per vowel pair. Due 
to the limited number of available minimal pairs, the target words varied in words class 
and lexical frequency. Frequency was measured in the AusE part of the GloWbe corpus 
(Davies, 2013); mean frequency in the /d/ condition was 312.5 per million words (range 
= 0.3–2,415), and 48.8 (range = 0.2–446) in the /l/ condition. Fillers were (C)V(C) 
words that did not contain /d/ or /l/ or the target vowels in any position. Fillers matched  
the candidates in part of speech and onset consonants and were chosen from the first 
5,000 most frequent words of the COCA database (Davies, 2008). Mean frequency of 
fillers was 397 per million words (range = 10–2,048).

Two sets of recordings of the stimulus materials were elicited, from a 57- and a 25-year-
old female speaker of AusE. Stimuli were recorded with an AKG C535EB Condenser 
Microphone onto an iMac using Presonus Studio Live 16.2.4 AI Mixer at 44.1 kHz sampling 
rate in a sound treated studio. The stimuli were amplitude-normalized and truncated to 
have a one-second silence before and after the end of the word. Formant change over time 
for the stimulus words is shown in Appendix D. Mean duration of target words in the /d/ 
condition was 593 ms (range = 425–727 ms), and 644 ms (range = 474–841 ms) in the 
/l/ condition. Mean duration of the fillers was 662 ms (range = 474–844 ms).
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3.1.3. Procedure
Prior to the experiment, participants familiarized themselves with the stimulus materials 
by reading them out loud as they were presented in random order on a computer monitor. 
Participants were introduced to the experiment with a short practice session, listening to 
audio recordings of ten words, and typing what they heard. Feedback was provided after 
each trial on spelling alternatives and acceptable responses. Familiarization and practice 
were followed immediately by the experimental phase.

Participants were seated in front of a computer monitor located at eye height at a distance 
of 50 cm and wore Sennheiser 380 Pro headphones adjusted to their comfortable listening 
level. Participants were instructed to respond as quickly and accurately as possible. To 
begin each trial, a fixation cross was displayed in the centre of the screen. After 500 ms, 
the target word started playing and participants typed what they heard. Participants were 
allowed to use backspace but did not receive feedback on their responses.

Each participant was tested on 32 targets and 32 fillers, all repeated in four blocks, 
once per block, with a 30-second forced break between the blocks. The first two blocks 
were spoken by the 57-year-old informant and the last two by the 25-year-old informant. 
The first and the third block were preceded by an additional six fillers at the beginning 
to habituate the listeners to the voice of the speaker. The 32 targets and the remaining 
32 fillers were presented in a pseudo-random order. Each participant was exposed to 64 
(items) × 2 (informants) × 2 (repetitions) + 12 (habituation) = 268 trials. The stimuli 
were presented with the software Expyriment (F. Krause & Lindemann, 2014). After the 
word recognition experiment, participants reported whether they found any of the words 
‘unusual’ or ‘difficult.’

3.1.4. Analysis
Responses to 46 (participants) × 268 (trials) = 12,328 trials were collected. Responses 
from the habituation trials (552 items) and from fillers (5,628 items) were excluded prior to 
any analysis. Nineteen tokens were excluded due to technical difficulties and coding errors.

The remaining 6,129 responses were rated for accuracy. Participants’ responses were 
compared to the target and classified as Intended Answer, Phonetic Respelling, Typo, 
Minimal Pair Error, and Other Error. Responses were classified as Intended Answer if 
spelled as the target or its homophone (e.g., both would and wood were classified as 
Intended Answer for /wʊd/). In addition, proper nouns spelled with lower case letters and 
contractions spelled without apostrophes were classified as Intended Answer. Unambiguous, 
phonetic, but nonstandard spellings of target words (e.g., knowed for node) were classified 
as Phonetic Respellings. Single letter deletions, additions, letter transpositions, and 
substitutions within one key distance of the target letter were classified as Typos (Luce 
& Pisoni, 1998). Responses in which participants confused members of the minimal pairs 
(e.g., answered fool when the target was full) were classified as Minimal Pair Errors. Any 
other errors, such as misheard words errors, e.g., cool for pool, were classified as Other 
Errors. Responses that were ambiguous between Typos and Other Errors, such as how for 
howl were also classified as Other Errors. Fifteen of the 31 Other Errors were ambiguous 
between Typos and Other Errors in the /d/ condition and 40 of 84 Other Errors were 
ambiguous in the /l/ condition. For the purposes of the analysis of accuracy, Intended 
Answers, Phonetic Respellings, and Typos were accepted as Correct; Minimal Pair Errors 
and Other Errors were rejected as Incorrect.

RT was measured from the onset of the stimulus to the first key-press. First, RT within 210 
ms of stimulus onset (Woods et al., 2015) or above 5,000 ms of stimulus onset (Baayen & 
Milin, 2010) were excluded from further analysis (0.06% of responses), as were responses 
beyond mean +/– 2 SD for each participant by coda condition (Ratcliff, 1993), leaving a 
total of 5,591 trials (91%) for the analysis.
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To measure the effect of coda /l/ on accuracy and speed of word recognition, we 
constructed two GLMMs: one with the independent variable Accuracy and another with 
RT. To analyze binary accuracy data, we used glmer() with the logistic link function in the 
lme4 package in R (Bates et al., 2015; R Core Team, 2018). To analyze RT data, we used 
glmer() with the logarithmic link function because the response time distribution was right-
skewed and followed a log-normal distribution (Figure 8). Convergence was estimated 
using the BOBYQA (Bound Optimization BY Quadratic Approximation) optimizer and an 
increased number of maximum iterations (Powell, 2009). LmerTest package (Kuznetsova et 
al., 2017) was used to calculate p-values using Satterthwaite’s degrees of freedom method. 
The independent variables were Coda (interacting), Vowel (interacting), and Target 
Frequency (non-interacting). The models included a random by-participant intercept and 
a by-participant random slope for the effect of coda to account for inter-listener variation. 
Coda was treatment-coded, comparing /l/ to the baseline /d/. Vowel was deviation-
coded, and the main effect of Vowel was investigated by comparing results for each vowel 
to the grand mean (instead of selecting one vowel as a baseline). Target Frequency was 
encoded as a continuous variable with the log-normalized per million words frequency of 
the target taken from the AusE section of GloWbE corpus (Davies, 2013).

3.2. Results
Rimes ending in /l/ were disambiguated less accurately (β = –5.07, z2.53 = –2.01, p 
= 0.0144) and more slowly (β = 0.06, t0.00 = 13.39, p < 0.001) than /d/-final words 
(Figure 9).3 To test that the accuracy results are due to confusion of minimal pairs, we 
repeated the analysis of accuracy data after removing responses classified as Other Errors 
and retaining only the responses classified as correct and Minimal Pair errors in a model 
with Coda, Vowel, and Lexical Frequency as non-interacting factors. Rimes ending in /l/ 
were disambiguated less accurately (β = –6, z1.14 = –5.27, p < 0.001) with only Minimal 
Pair errors too (Figure 10).

Target vowels had no significant main effect on accuracy and did not show any significant 
interactions with Coda /l/. The lack of significant Vowel effects on accuracy is probably 
due to the fact that participans were at ceiling in the /d/ condition, therefore there was 
no variation between target Vowels in the /d/ condition.

 3 RT estimates are reported as log-normalized ms.

Figure 8: Distribution of RT (ms) for correct responses. Black bars: Coda /d/ condition. Grey bars: 
Coda /l/ condition.
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Target vowels significantly affected RT (Table 1). Response times for words containing 
the short target vowels /ɪ, ʊ, ɔ/ were significantly quicker than the grand mean, and 
response times to words containing long target vowels /iː, ʉː, æɔ/, but not /əʉ/, were 
slower than the grand mean (Table 1). Response times for words containing phonemically 
long vowels may have been slower because they were on average 132 ms longer than 
words containing short vowels, and RT was measured from acoustic stimulus onset.

Coda-Vowel interactions showed that the slowing effect of /l/ relative to /d/ was smaller 
on /iː, ɪ, ʉː, əʉ,/ and larger on /ɔ/ (Table 2, Figure 11).

Our models contained an interaction between Coda and Vowel, but not between Coda and 
Lexical Frequency. These models suggested that more frequent words were disambiguated 
more accurately (β = 0.18, z0.06 = 3.21, p = 0.001) and more slowly (β = 0.01, t0.002 = 4.2,  

Figure 9: Effect of Coda /l/ (grey) compared to Coda /d/ (black) on response accuracy and time.

Figure 10: Percentage of inaccurate responses with and without minimal pair errors.

Table 1: Vowel effects on RT. Top row: Estimate (β). Bottom row: p-value.

iː ɪ ʉː ʊ æɔ əʉ ɔ

β  0.02 –0.03  0.06 –0.04  0.08 –0.0001 –0.02

p  0.02  <0.001  <0.001  <0.001  <0.001  0.99  <0.001 
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p < 0.001), contrary to the established results on faster RT to more frequent words 
(Meunier & Segui, 1999). Although a detailed analysis of the effects of lexical frequency on 
the accuracy and speed of recognition of /l/-final words is not possible due to the limited 
number of words (four for each vowel pair), an exploratory analysis suggests that listeners 
prefer the more frequent competitor within the pair for coal-Col and mole-moll (Figure 12).

3.3. Discussion
The goal of this experiment was to gauge how listeners use word-level information when 
they identify /l/-final words. We found significantly less accurate and slower word 
recognition in /l/-final words compared to /d/-final words. The lower accuracy rates in 
the /l/ condition were driven by listeners’ tendency to confuse minimal pair competitors, 
a pattern that did not occur in the /d/ condition.

These findings that listeners sometimes map the acoustic signal inefficiently and even 
incorrectly may suggest that listeners are not able to recover the intended vowel phoneme 

Table 2: Vowel-Coda /l/ interaction effects on RT. Top row: Estimate (β). Bottom row: p-value.

iː ɪ ʉː ʊ æɔ əʉ ɔ

β –0.05 –0.03 –0.09 –0.003  0.005 –0.02  0.07

p  <0.001  0.01  <0.001  0.74  0.61  0.03  <0.001 

Figure 11: Effect of Coda and Vowel on the accuracy and RT of responses.

Figure 12: Correct responses and minimal pair errors by Target word in the /l/-condition.



Szalay et al: Perceptual vowel contrast reduction in Australian English /l/-final rimesArt. 9, page 18 of 25  

under the coarticulatory influence of /l/. Instead of attributing the coarticulatory effects 
to coda /l/, listeners may sometimes interpret coarticulatory effects as a characteristic 
of the vowel. Despite the fact that typed responses showed listeners identified the words 
as /l/-final and therefore perceived the motivating environment for coarticulation, this 
information was not always useful for correct identification of the word. In this context 
there may be insufficient information available to listeners to allow for accurate recovery 
of the intended vowel.

The only two target words in which listeners sometimes failed to perceive the motivating 
environment were howl (/hæɔl/) and Hal (/hæl/), both of which were perceived as 
how (/hæɔ/) in respectively 22% and 13% of trials. Confusion of [æɔɫ#] and [æɫ#] with 
/æɔ#/ is not unexpected, given that the dorsal articulation of coda /l/ is inherently similar 
to that of a back vowel (Gick, Kang, & Whalen, 2002) and that acoustically, final /l/ can be 
absorbed in the preceding /æɔ/ (Palethorpe & Cox, 2003). Furthermore, /l/-vocalization 
is common after back vowels in AusE (Horvath & Horvath, 1997; Borowsky, 2001), which 
further increases the similarity between howl and how. In contrast, the low front /æ/ in 
Hal facilitates vocalization to a lesser extent (Horvath & Horvath, 1997; Borowsky, 2001), 
but if listeners perceive final /l/ as a vowel (i.e., vocalized), it is very likely to be perceived 
as /ɔ/ due to the correspondence between /æɔ/ and /æl/ (Palethorpe & Cox, 2003).

We did not find that the effect of /l/ on accuracy differed between words with different 
target vowels, despite an apparent difference in recognition accuracy (Figure 11). We 
detected a difference in the slowing effect of /l/ between words with different target 
vowels: The effect was smaller for /iː, ɪ, ʉː, əʉ/ and larger for /ɔ/, indicating increased 
difficulty for targets with /ɔ/. Overall vowel effects showed that words with short vowels 
were recognized more quickly compared to words with long vowels. The vowel effect 
could be the result of listeners waiting until stimulus offset, therefore taking longer to 
respond to stimuli with long vowels (mean length = 588 ms) compared to short vowels 
(mean length = 456 ms).

Frequent words were recognized more accurately but more slowly, when interactions 
between Coda and Target vowel were examined, partly consistent with previous findings 
(Morton, 1969; Meunier & Segui, 1999). The apparent slowing effect of increased lexical 
frequency might be the artefact of the stimuli not being balanced for lexical frequency. 
Nevertheless, an exploratory analysis revealed that only two minimal pairs in the /l/ 
condition were characterized by a listener preference for the frequent member of the 
minimal pair in the case of large frequency discrepancies: mole-moll (2.42 versus 0.2 
occurrences per million words) (Davies, 2013) and coal-Col (66.96 versus 3.3 occurrences 
per million words) (Davies, 2013). That is, when the target was very infrequent, Col or 
mol, listeners defaulted to the more frequent minimal pair competitor, coal and mole. 
This could be related to participants’ unfamiliarity with the targets Col and mol (Connine, 
Mullennix, Shernoff, & Yelen, 1990), as some participants flagged the words moll, Col, 
Hal, Val as ‘unknown’ or even ‘nonsense’ words in the exit interview, but did not flag their 
minimally differing competitor.

Lower accuracy and slower speed of recognition of lateral-final words indicate increased 
processing difficulty, which we attribute to the reduced acoustic contrast between the 
members of the minimal pairs. Reduced acoustic contrast can make word recognition 
harder by making the acoustic signal inherently ambiguous in perception. Furthermore, 
reduced acoustic contrast can also increase lexical activation of minimal pair competitors 
in the /l/-context compared to the /d/-context, which inhibits the recognition of the target 
(Luce & Pisoni, 1998). That is, vowel-/l/ coarticulation does not only lead to increased 
processing difficulty, as shown in Experiment 1, but also hinders lexical access. Listeners’ 
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minimal pair errors show that they mapped the acoustic signal to the competitor word 
instead of the target, indicating that CVl minimal pairs ending in /ʉːl-ʊl, əʉl-ɔl, æɔl-æl/ 
are inherently ambiguous between two lexical items.

4. Conclusion
The results of Experiment 1 and 2 combined show that the acoustic signal in prelateral 
vowels is inherently ambiguous, in particular between the members of the vowel-pairs 
/ʉː-ʊ, æɔ-æ, əʉ-ɔ/. In Experiment 1, we found reduced perceptual contrast between 
the vowel-pairs /ʉː-ʊ, æɔ-æ, əʉ-ɔ/ which we attribute to the ambiguity of the acoustic 
signal. This is supported by the fact that vowels with similar place of articulation are 
confused with each other in the /d/ and increasingly so in the /l/ condition. Vowel 
cues are modified by the coarticulatory influence of the coda /l/ in such a way that 
contrastive cues are masked and the signal becomes ambiguous between two elements in 
the vowel inventory. In Experiment 2, we found that reduced perceptual vowel contrast 
and vowel ambiguity caused by the coarticulatory effects of /l/ also hinder lexical access 
and recognition of /l/-final minimal pairs contrasting /iː-ɪ, ʉː-ʊ, æɔ-æ/ and /əʉ-ɔ/. 
Listeners’ ability to recognize words might be limited by their familiarity with the word: 
For unfamiliar words, listeners may map an ambiguous signal to a frequent competitor; 
however, more research is needed on the effects of frequency and familiarity. The two 
experiments together show that vowel-lateral coarticulation reduces perceptual vowel 
contrast both in vowel disambiguation and in word recognition.

Reduced perceptual vowel contrast in the prelateral context can potentially indicate 
limited compensation for coarticulation. The acoustic cues in lateral-final rimes are 
inherently ambiguous between cueing coda identity and vowel identity. If listeners 
attribute these cues to the coda /l/, they should be able to compensate for its coarticulatory 
influence and correctly identify the prelateral vowel. If, however, listeners attribute the 
cues to the vowel itself, they will fail to compensate for coarticulation and will misidentify 
the vowel. The finding that listeners cannot always identify prelateral vowels as they 
were intended by the speaker despite perceiving /l/ itself is consistent with limited 
compensation for the coarticulatory effects of /l/.

Perceptual vowel contrast reduction has implications for theories of sound change, 
as sound change is often related to how coarticulation is produced by the speaker 
and perceived by the listener (Ohala, 1993; Beddor, 2009; Solé & Ohala, 2010; Ohala, 
2012; Garrett & Johnson, 2013; Harrington, Kleber, Reubold, Schiel, & Stevens, 2018). 
Coarticulation provides systematic and directional variation which may become the input 
for sound change (Garrett & Johnson, 2013). Ohala’s (1981, 1993, 2012) model of sound 
change identifies insufficient compensation for coarticulation, not its production, as a  
process implicated in the initiation of sound change. In contrast, in the interactive 
phonetic (IP) sound change model by Harrington et al. (2018), insufficient compensation 
for coarticulation is not the cause, but the effect of and evidence for sound change. In the 
IP model, the prerequisite of sound change is that typical realizations of two phonemes 
are acoustically distinct, but highly coarticulated realizations of one phoneme become 
acoustically similar to the other phoneme (Harrington et al., 2018). Viewed through these 
models, perceptual contrast reduction observed in these data may be a precursor to a sound 
change, as listeners do not always retrace the acoustic signal to the speakers’ intended 
form. Perceptual vowel contrast reduction indicates that the prelateral allophones of the 
vowel pairs /ʉː-ʊ, æɔ-æ, əʉ-ɔ/ may have merged, although we did not find the perception 
of pre-/l/ allophones of the vowel pairs to be skewed towards one phonemic category 
within the pair.
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However, not all allophonic variation in production leads to sound change (Ohala, 1993) 
and failed compensation or miscategorization of items does not always indicate sound 
change (M. Stevens & Harrington, 2014; Harrington et al., 2018). In order to explore 
this question, an apparent time or a sociolinguistic study is needed to better understand 
the implications for the actuation of sound change in the prelateral vowels of Australian 
English.
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