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A B S T R A C T

Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes
shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study
approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral
assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on
Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban
coral reefs, including “reef compression” (a decline in bathymetric range with increasing turbidity and de-
creasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef
complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating
periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present
hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in
urban areas.
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1. Introduction

Globally, coastal zones are undergoing unprecedented rates of ur-
banization and population growth (Small and Nicholls, 2003; Hugo,
2011; Dsikowitzky et al., 2016). Changes to the marine environment
associated with urbanization, such as increased sediment delivery,
nutrients, and pollutants (Carpenter et al., 1998; Airoldi, 2003), are
particularly detrimental to reef-building corals (Roberts, 1993) and a
major threat to coral reef ecosystems (Bridge et al., 2013). Despite this,
hard corals and coral reefs are found in urban waterways of many
tropical and subtropical cities (Grigg, 1995; Banks et al., 2007;
Martinez et al., 2017). Many of these urban coral reef ecosystems have
been studied in isolation (e.g., Becking et al., 2006; Hongo and Yamano,
2013; Cleary et al., 2014, 2016; Polónia et al., 2015; Baum et al.,
2016a; Duprey et al., 2016; Guest et al., 2016), however, efforts to
collate these works and look for unifying patterns across coastal cities in
the tropics have thus far been lacking. Since urban coral reefs have been
subject to a multitude of anthropogenic stressors that likely reflect fu-
ture conditions for corals across much of their range as coastal urba-
nization proliferates, understanding the characteristics of urban coral
reef ecosystems is important for anticipating future trends in what is
currently an understudied areas of coral reef ecology and conservation.

Urban coral reefs may differ in composition, physical character-
istics, and ecosystem dynamics from coral reefs in more remote loca-
tions (Hodgson, 1999; Mora, 2008) due to the unusual combination of
relatively extreme abiotic conditions that characterize urban marine
environments (McClelland et al., 1997; Bulleri and Chapman, 2010;
Dafforn et al., 2015; Mayer-Pinto et al., 2015). Sediment pollution,
which is often extremely high in urban waterways, limits photo-
synthetic activity of zooxanthellae, is energetically demanding for
corals to remove sediments, and impacts reproductive cycles of some
coral species (Erftemeijer et al., 2012; Jones et al., 2015); this may
select for sediment-tolerant hard corals and symbionts, alter inter-
specific interactions, and lead to depth distribution patterns that defy
expectation based on traditional paradigms from more pristine reef
environments (Rogers, 1990; Darling et al., 2012). Nutrient influx from
a multitude of urban sources (runoff, wastewater systems, and in-
dustrial activities) may create favourable conditions for macroalgae
that compete with corals for space and for coral bleaching and disease
(Pastorok and Bilyard, 1985; Bruno et al., 2003; Rädecker et al., 2015;
Shidqi et al., 2018). Early removal of essential grazers and other eco-
logically important groups, which likely preceded overfishing in more
remote areas (Kirby, 2004; Van Houtan and Kittinger, 2014), may have
compounded impacts from nutrient loading, helping shape the eco-
evolutionary trajectory of coral assemblages in urban areas. This tra-
jectory may have been further influenced by high concentrations of

dissolved copper and other contaminants (Howard and Brown, 1984;
Rinawati et al., 2012; Sindern et al., 2016), the abundance of novel
habitat provided by urban infrastructure (Bulleri and Chapman, 2015),
and altered ecological connectivity associated with ocean sprawl
(Bishop et al., 2017; Heery et al., 2017). Yet, the community traits and
ecological processes that define urban coral reefs, and their adaptation
and resilience to such stressors have not been clearly characterized.

In this review, we compile available information on the urban coral
reefs of East and Southeast Asia with the aim of identifying unifying
patterns and characteristics of urban coral reefs. Although many past
reviews have presented anthropogenic factors that negatively impact
corals and coral reefs broadly (i.e., Wilkinson, 1999; Hughes et al.,
2003; Fabricius, 2005; Knowlton and Jackson, 2008; Erftemeijer et al.,
2012), we focus on impacts from urbanization specifically and look for
patterns across multiple cities. Although resource use and extraction
had major impacts on coral reefs near cities historically (Butcher, 2004;
Hoeksema and Koh, 2009; van der Meij et al., 2010), they have become
less extensive in recent decades (Rachello-Dolmen and Cleary, 2007),
and thus are covered only to the extent necessary to understand past
and current trajectories of urbanized reefs. We define urban coral reefs
as hard-coral-dominated habitats that are located in urban waterways,
urban watersheds, or areas where there are clear urban gradients in one
or more of the abiotic conditions especially relevant for hard corals, as
dominant reef builders (Table 1; for basic definitions of ‘urban’ and
‘urbanization’, see McIntyre et al., 2000; Wu, 2014). Evidence of car-
bonate deposition is not a criterion under this definition; this is to in-
clude recently or currently forming coral reefs, as well as coral-domi-
nated habitats near the latitudinal limits of reef-building corals.
Additionally, while we use the distance from urban centres as a proxy
for urban-related environmental conditions, our definition of urban
coral reefs intentionally excludes more specific spatial metrics, as the
footprint or coastline extent of urbanization is expected to differ con-
siderably from one coastal city to the next, and between stressors
caused by urban development.

We focus on East and Southeast Asia because of the large number of
rapidly growing, densely populated coastal cities in this region that
overlap with historically coral-dominated reef systems. Asia is a global
hotspot for coral biodiversity (especially the South China Sea and the
Coral Triangle), supporting> 500 species of coral, and hundreds to
thousands of other invertebrates, algae, and reef fish (Bellwood and
Hughes, 2001; Roberts et al., 2002; Hoeksema, 2007; Huang et al.,
2015). At the same time, Asia has been experiencing the most rapid
coastal population growth globally for several decades (Jiang et al.,
2001), and has a larger population and higher population densities in
coastal zones than any other continent (McGranahan et al., 2007).
Additionally, Southeast Asia has more people living within 30 km of a

Table 1
Urban-related changes in coastal waters that are particularly relevant for hard corals.

Urban-related changes Potential or known effect(s) Selected references

Pollution
Terrigenous and Reduced light availability; more rapid light attenuation; reduced photosynthetic capacity of zooxanthellae;

smothering of coral polyps
Fabricius (2005)

Marine sediments Pollock et al. (2014, 2016)
Nitrogen and phosphorus Elevated plankton productivity and shading; risk of eutrophication and hypoxia Pastorok and Bilyard (1985)
Heavy metals Toxicity for metazoans Howard and Brown (1984)
Organic contaminants Integration into coral tissues; potential effects on invertebrate larvae Thomas and Li (2000)
Plastic litter Uptake of microplastics by plankton; integration into coral tissue Hall et al. (2015)
Marine debris Abrasion of coral colonies; some types may serve as novel settling substrate Gall and Thompson (2015)
Light pollution Potential to impede natural cues for mass spawning Kaniewska et al. (2015)
Noise pollution Potential to impede detection of acoustic cues for free-swimming coral larvae Vermeij et al. (2010)

Artificial substrates Plastic nets and floating debris Hoeksema and Hermanto
(2018)

Artificial rocky habitat Potential to serve as artificial habitat for corals; placement loss if constructed on existing reefs; altered
hydrodynamic conditions with potential impacts on larval transport and connectivity

Burt et al. (2009a, 2009b)
Floating structures Bulleri and Chapman (2010)
Piers and pilings Bishop et al. (2017)
Scoria deposits Gilbert et al. (2015)
Artificial islands Decreased reef area through placement loss; potential increase in intertidal environments Lai et al. (2015)
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coral reef and greater participation in marine fisheries relative to po-
pulation size compared with other regions, which has resulted in many
coral reefs near major population centres becoming overexploited and
degraded (Burke et al., 2002, 2011). East and Southeast Asia is thus the
ideal region in which to examine cross-city patterns in urban coral
reefs.

The review consists of three parts: (1) Case studies of urban coral
reefs in several major East and Southeast Asian coastal cities, (2) an
evaluation of the unifying patterns and characteristics that emerge from
published literature across these case study cities, and (3) remaining
research needs and current mitigation efforts for urban coastlines.
Although there were many candidate cities in the region, we focused
our review on four main case studies for which temporally and spatially
comprehensive coral survey data were available: Singapore, Jakarta
(Indonesia), Hong Kong (PR China), and Naha (Okinawa, southern
Japan). These four in-depth case studies are accompanied by shorter
synopses of urban coral reefs in Pattaya (Thailand), Nha Trang
(Vietnam), Davao City (southern Mindanao, Philippines), Kota
Kinabalu (northwest Sabah, Malaysia), Bandar Seri Begawan (Brunei
Darussalam), Padang (West Sumatra, western Indonesia), and Makassar

(South Sulawesi, eastern Indonesia) (Fig. 1). Ultimately, the patterns
detailed in this review form the basis for future hypothesis testing and
field experimentation that mechanistically elucidates the major drivers
of urban coral reef ecosystem structure and function. Such advance-
ment in our knowledge of urban reef ecosystems is crucial as rapid
population growth in coastal regions threatens to urbanize vast swaths
of nearshore habitats.

2. Urban reefs: case studies

2.1. Singapore

Singapore is situated 1° north of the equator, at the southern tip of
Peninsular Malaysia (Fig. 1; Table 2). It comprises a heavily developed
main island and numerous offshore islands to the south (Fig. 2; Chou,
2006). Extensive land reclamation has transformed the coastline over
the last century (Corlett, 1992; Lai et al., 2015), expanding Singapore's
total land area by> 50% (Tan et al., 2016) but also increasing turbidity
and sedimentation in surrounding marine habitats (Hilton and
Manning, 1995). Sediment inputs from land reclamation and coastal

Fig. 1. Map of East and Southeast Asia with all case study cities are labelled. The four main case study cities (Singapore, Jakarta, Hong Kong, and Naha) are shown in
larger font.
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construction far outweigh those from fluvial sources (van Maren et al.,
2014) and are estimated to have reduced average visibility from 10m
to 2m distance since 1960 (Chou, 1996). Additionally, Singapore's port
is among the busiest in the world (Chou, 2006), as the port of call for
over 500 large commercial vessels every month (Lim et al., 2017) and

with a throughput of nearly 30 million shipping containers every year
(Yap and Lam, 2013). Dredging to maintain shipping channels and port
terminals is another driver of high sediment loads in Singapore's waters
(Chou, 2006).

Corals reefs in Singapore's territorial waters include shallow patch

Table 2
Comparison of demographic, biophysical, and coral reef characteristics of Singapore, Jakarta, Hong Kong, and Naha.

Singapore Jakarta Hong Kong Naha

Latitude 1° 17′ N 6° 7′ S 22° 17′ N 26° 12′ N
Climate Tropical Tropical Subtropical Subtropical
Population (millions)[1] 5.6 10.3–28.9 7.3 0.3–1.2
Annual rate of population change (%)[2] 2.39 1.08–3.7 0.87 0.4
City GDP per capita (USD) $66,864[3] $9984[3] $57,244[3] $28,893[4]

Gini coefficienta 0.46[5] 0.43[2] 0.54[2] 0.31[6]

Unemployment (%)[2] 2.8 11.3 4.4 5.4
Port volume (millions of TEUb/year) 30.9[7] 5.2[8] 20.1[9] 0.5[10]

Land area (km2) 719[5] 664–2784[11,12] 1106[13] 39–478[14]

% reclaimed land 33.5[15] Unknown 5[16] 16.72[17]

Coastline length (km) 505[18] 35[12] 800[19] 33c

Sea surface temperature (°C) 27–31[20] 27–30[21] 13–30[22] 21–28[23]

Annual average precipitation (mm) 2329[24] 2000[25] 2399[26] 2037[27]

Minimum salinity (PSU) 28[28] 32[29] 22[18] 25[30]

Turbidity (NTU) 4.8–6.6[31] 0.4–1.5[32] 2.6–5.6[33] 4.2–12.1[34]

Visibility (m) 2[35] 3[11] 1–3[18] < 5[36]

Chl a (μg/L) 1.7–3.2[28] 0.9–15.7[32] 1.8–2.5[33] 0.13–0.25[37]

NO3+NO2 (μM/L) 0.04–0.15[28] 0.26–1.29[32] 0.02–0.04[33] 0.03–0.52[34]

NH4 (μM/L) 0.02–0.09[28] 0.46–11.64[32] 0.03–0.07[33] 0.01–0.59[34]

PO4 (μM/L) 0.01–0.04[28] 0.05–4.09[32] 0.01–0.02[33] 0.14–0.22[34]

Contaminants
Heavy metals in water samples exceeding
recommended limitsd

Cu[38] Pb, Hg, Cd, Cu, As, Cr, Co[39] NA[40] Pb[41]

Organic contaminants of greatest concern PAHs, PCBs, pesticides[42] PAHs, LASs, PCBs, LABs,
DIPN[43]

PAHs, PCBs, DDT,
PBDEs[40,44]

PAHs, PCBs, pesticides[45]

Faecal coliforms (cfu/100mL) 120–39,726[46] Up to 16,000[25]e 24–2643[18] 4–31[47]

Escherichia coli (cfu/100mL) 10–5794[46] Up to 1100[25]e 2–1150[18] Unk
Maximum reef depth (m) 8[48] 10[29] 5[49] 30[50]

No. of hard coral species (historically) 255[51] 158[52] 92[53] 340[54]

Typical hard coral percent cover 13 to 49%[55] 0 to 72%[56] < 10 to > 50%[53] 0 to 50%[57]

Typical macroagal percent cover <20%[55] < 35%[58] < 20%[18] < 10%[50]

No. of reef fish species (historically) > 200[59] 216[60] > 325[61] 87[62]

[1] UN Population Division (2014). World Urbanization Prospects. Available online at: https://esa.un.org/unpd/wup/CD-ROM/; [2] UN Habitat (2016). UN World
Cities Report 2016. Available online at: https://unhabitat.org/books/world-cities-report/; [3] Citie (2017). City Initiatives for Technology, Innovation and
Entrepreneurship. Available online at: http://citie.org/cities/; [4] OECD (2016). Organization for Economic Co-operation and Development. Available online at:
http://stats.oecd.org/Index.aspx?QueryId=51329#; [5] Dept of Statistics Singapore (2016). Key Household Income Trends, 2016. Available online at: https://www.
singstat.gov.sg/docs/default-source/default-document-library/publications/publications_and_papers/household_income_and_expenditure/pp-s23.pdf; [6] Katayama
et al. (2013); [7] PSA (2016). Port of Singapore Authority. Available online at: https://www.singaporepsa.com/about-us; [8] IPC (2016). Port of Tanjung Priok.
Available online at: http://www.priokport.co.id/; [9] Marine Department (2016). Government of Hong Kong Special Administrative Region Marine Department.
Available online at: www.mardep.gov.hk; [10] NPA (2016). Naha Port Authority. Available online at: http://www.nahaport.jp/promotion/English/4.html; [11]
Cleary et al. (2014); [12] Tan et al. (2015); [13] Lands Department (2005). Government of Hong Kong Special Administrative Region Lands Department. Available
online at: http://www.landsd.gov.hk/mapping/en/publications/total.htm; [14] UN (2008) Demographic Yearbook 2008. Available online at: https://unstats.un.
org/unsd/demographic/products/dyb/; [15] Thiagarajah et al. (2015); [16] Glaser et al. (1991); [17] Japan Ministry of the Environment (2004) Available at:
https://www.env.go.jp/nature/biodic/coralreefs/reference/mokuji/0204j.pdf; [18] Lai et al. (2015); [19] Fabricius and McCorry (2006); [20] Hilton and Manning
(1995); [21] Scoffin et al. (1989); [22] Yeung et al. (2014); [23] Hongo and Yamano (2013); [24] Meteorological Service Singapore (2017). Available online at:
http://www.weather.gov.sg/climate-climate-of-singapore/; [25] Phanuwan et al. (2006); [26] GovHK (2017). Hong Kong - The Facts. Available online at: https://
www.gov.hk/en/about/abouthk/facts.htm; [27] Tsuchiya et al. (2004); [28] Gin et al. (2000); [29] Baum et al. (2015); [30] Kawahata et al. (2004); [31] Loh et al.
(2006); [32] Baum et al. (2016a); [33] Yung et al. (2001); [34] Reimer et al. (2015); [35] Chou (1996); [36] Shimabukuro and Reimer pers. obs. Unpublished BSc
thesis.; [37] Soliman et al. (2016); [38] Browne et al. (2015); [39] Siregar et al. (2016); [40] Liu and Kueh (2005); [41] Ramos et al. (2004); [42] Sin et al. (2016);
[43] Breckwoldt et al. (2016); [44] Deng et al. (2015); [45] Imo et al. (2008); [46] Goh et al. (2017); [47] Okinawa Prefecture (2017). Available online at: http://
www.pref.okinawa.jp/site/kankyo/hozen/mizu_tsuchi/water/20140603suiyokujo.html; [48] Bauman et al. (2015); [49] Morton (1994); [50] Reimer (2017) pers.
obs.; [51] Huang et al. (2009); [52] Cleary et al. (2006); [53] Duprey et al. (2016); [54] Nishihira and Veron (1995); [55] Guest et al. (2016); [56] Cleary et al.
(2016); [57] Shilla et al. (2013); [58] Draisma et al. (2018); [59] Low et al. (1997); [60] Madduppa et al. (2012); [61] Sadovy and Cornish (2000); [62] Lecchini
et al. (2003).

a A measure of dispersion in incomes commonly used to represent wealth distribution of a city's residents. Values closer to 0 reflect greater income equality; values
closer to 1 reflect greater income inequality.

b TEU: twenty-foot equivalent unit (metric used to quantify a cargo ship's volumetric capacity; 1 TEU=volume of 1 standard 20′ shipping container (20 ft. L× 8 ft
H)). Values provided are from 2015, as compiled by the World Shipping Council (http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-
container-ports).

c Estimated from maps.
d ANZECC (2000). In: Strategy, NWQM (Ed), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, p. 314. NA indicates that all metals

detected in water samples were within recommended limits.
e Value represents geometric mean concentration measured in Ciliwung River discharge, as values from marine waters in Jakarta were unavailable.
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and fringing reefs that are extremely compact, as well as extensive in-
tertidal reef flats (Hilton and Chou, 1999). Most coral cover in Singa-
pore is limited to a relatively narrow strip between the reef crest and
upper reef slope from 3 to 6m depth (Huang et al., 2009; Guest et al.,
2016). This depth restriction is due to the upper reef flats (0–2m) being
dominated by the canopy-forming macroalgae Sargassum for most of the
year (Low, 2015) and extreme light attenuation with increasing depth
(> 6m) from chronic high sediment deposition and suspended particles
(Todd et al., 2010). Dikou and van Woesik (2006) note that coral
genera normally found in deeper zones, such as Leptoseris and Oxypora,
occur at relatively shallow depths in Singapore. At the same time,
shallow-water taxa that are typical of the region, such as Acropora, are
not abundant (Guest et al., 2016). The most common hard corals in-
clude a variety of sediment-tolerant genera, such as Montipora, Pectinia,
and Porites (Dikou and van Woesik, 2006). Even for sediment-tolerant
taxa, high sediment loads and light limitation in Singapore waters can
alter calice morphology, reduce growth rates, and limit other aspects of
coral condition (Ow and Todd, 2010; Browne et al., 2015).

Total reef area in Singapore has declined considerably during the
20th century (Chou, 1996). Using historical maps, Hilton and Manning
(1995) estimated that the total area of intertidal reefs in Singapore
decreased from 32.2 km2 in 1922 to 30.5 km2 in 1953. A subsequent
analysis by Lai et al. (2015) indicated further decreases to 17 km2 in
1993 and 9.5 km2 in 2011. There have also been widespread losses in
the subtidal reef zone as large areas of subtidal reef have been covered
by sediments and artificial structures as a result of dredging and land
reclamation (Low and Chou, 1994; Chou, 1996). This has coincided
with considerable decreases in coral cover at reef sites that remain,
particularly for deeper habitats. Guest et al. (2016), for instance, found
a decrease in coral cover of nearly 30% at deep sites (6–7m) between

1986 and 2012. During the same period, mean coral cover at shallow
sites (3–4m depth) decreased by approximately 12% (Guest et al.,
2016).

Time series data suggest that coral reefs in Singapore may rebound
rapidly following thermal bleaching events. For instance, at shallow
sites surveyed by Guest et al. (2016), coral cover returned to pre-
bleaching levels in< 10 years following El Niño-associated bleaching
in 1998. The 2010 thermal anomaly also caused a decline in coral cover
of> 20% but it had recovered about a quarter of that lost cover by
2012 (Guest et al., 2016), and fully by early 2016 (J.S.Y. Wong et al.,
2018). This rapid recovery is unlikely to be driven by new recruitment,
as settlement of coral larvae in Singapore is limited (Bauman et al.,
2015). Rather, taxa that dominate Singapore's coral reefs, such as
Merulina, are particularly adept at regrowth following partial to near-
complete colony death, and may rapidly increase coral cover levels via
horizontal expansion (Guest et al., 2016). Despite this general, mostly
anecdotal pattern, predicting coral susceptibility and recovery in re-
sponse to thermal stress in Singapore remains complex (Chou et al.,
2016).

Given chronic sedimentation throughout much of Singapore's ter-
ritorial waters, hard coral species richness is surprisingly high.
Historically, 255 species of hard coral have been documented in
Singapore (Huang et al., 2009), but only a subset of these have been
recorded in recent years. For instance, Huang et al. (2009) observed
161 species in 2006–2007, a level of diversity on par with surveys at
more remote locations within the surrounding region (Harborne et al.,
2000; Affendi et al., 2005; Huang et al., 2015). Macroalgal competitors
of coral include the genera Bryopsis and Sargassum (Lee et al., 2012) but
cover on the reef crest is generally low at ≤20% (Guest et al., 2016),
though this varies considerably between sites, as well as in relation to

Fig. 2. Map of Singapore, including the main and surrounding islands. Numbers represent survey sites where coral cover data shown in Fig. 3 were collected by Guest
et al. (2016) and those in Fig. 10 by J.S.Y. Wong et al. (2018).
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abundances of the urchin, Diadema setosum (Goh and Lim, 2015). Guest
et al. (2016) found no evidence of phase shifts between coral and
macroalgal dominated states over time. Rather, sedimentation and light
availability may be limiting to corals and macroalgae alike (Low et al.,
1997), and is generally considered to be among the most essential
drivers of community structure locally.

Coral reefs in Singapore are highly variable across small spatial
scales (hundreds of meters), but some broader spatial patterns are
evident with increasing distance from Singapore's main island. Dikou
and van Woesik (2006) found inshore reefs comprised more encrusting
and massive growth forms compared with offshore reefs, which had
more foliose corals. At inshore sites, coral cover tends to be low, but
varies considerably from one site to the next (Fig. 3; Dikou and van
Woesik, 2006, Guest et al., 2016). These patterns do not necessarily
carry over to coral diversity, as Huang et al. (2009) found no evidence
of inshore-offshore gradations in coral species richness. However,
richness is consistently highest at Raffles Lighthouse, the site farthest
from Singapore's main island (Guest et al., 2016).

2.2. Jakarta, Indonesia

Jakarta is situated on the northwestern side of the Indonesian island
of Java (Fig. 4). It is one of the world's largest cities. Population esti-
mates range from 10 million to 30 million depending on the boundaries
used to define the greater metropolitan area (Forstall et al., 2009; Baum
et al., 2016b). The city is bounded to the north by Jakarta Bay, a
500 km2 open embayment, which is part of the semi-enclosed Java Sea.
Three major rivers deliver freshwater inside or just outside the bay: the
Ciliwung, Cisadane, and Citarum (Poerbandono et al., 2014; van der
Wulp et al., 2016a, 2016b). Sewage discharge, runoff, and contamina-
tion from heavy metals and organic and inorganic pollutants are
chronic problems, with wastewater plumes extending tens of kilometers
into surrounding marine areas (Hosono et al., 2011; Breckwoldt et al.,
2016; Dsikowitzky et al., 2017). Water quality is also impacted by
coastal construction and land reclamation (Verstappen, 1988), although
current estimates of total reclaimed land area were found to be lacking
in our review (however see illustration by Takagi et al., 2017). Addi-
tional future plans to reclaim>50% of Jakarta Bay, adjoining either
the 5-m or the 10-m isobath (Han et al., 2013; Priyambodho et al.,
2015; van der Wulp et al., 2016a, 2016b), would support high-end
housing, tourism, shipping, and economic growth, and help to mitigate
land subsidence and coastal flooding, but would have negative impacts
on those in the lowest socio-economic brackets and on fishermen
(Colven, 2017).

Historically, Jakarta and surrounding areas contained extensive and
diverse coral reefs (Moll and Suharsono, 1986) that were essential for
local subsistence and small-scale fisheries (Padawangi, 2012; Baum
et al., 2016b). Reconstruction of historical data suggest Jakarta Bay
hosted diverse coral assemblages as recently as 1920, with> 70 acro-
porids,> 30 faviids (now classified as merulinids), > 20 poritids, and
numerous other families of hard coral (van der Meij et al., 2010). Ja-
karta Bay was also rich in other benthic and demersal organisms, in-
cluding 11 species of macroalgae (Draisma et al., 2018), 36 benthic
forams (Hofker, 1968), 171 species of molluscs (van der Meij et al.,
2009), a diversity of sponges and other invertebrates (Cleary et al.,
2008; de Voogd and Cleary, 2008), and various commercially valuable
fish species (Baum et al., 2016b).

Today, Jakarta's coral reefs are considerably less diverse (van der
Meij et al., 2009, 2010; Draisma et al., 2018), are limited to shallow
depths < 10m (de Voogd and Cleary, 2008; Baum et al., 2015) and
exhibit pronounced patterns along an inshore-offshore gradient (Cleary
et al., 2008, 2016; Baum et al., 2015). Reefs within approximately
20 km of Jakarta have lower coral cover and diversity than reefs further
away (Fig. 5; Cleary et al., 2008, 2016). The diversity of macroalgae,
sponges, molluscs, echinoderms, ascidians, and fishes is also reduced in
inshore areas (Cleary et al., 2008, 2016; de Voogd and Cleary, 2008;
Madduppa et al., 2013; Draisma et al., 2018). Gradations in species
diversity are closely tied with water quality, as inshore sites have higher
turbidity, mean temperature, pH, dissolved oxygen, and chlorophyll-a
concentrations, as well as lower salinity, compared with offshore sites
(Cleary et al., 2008, 2016).

Given spatial complexities in the decline of Jakarta's coral reefs over
time (van der Meij et al., 2010; Cleary et al., 2014), temporal trends are
perhaps best considered within distinct spatial strata. The Jakarta Bay-
Thousand Island reef complex is commonly divided into three zones
(Cleary et al., 2006): Zone 1,< 18 km (the area south of −5.97° lati-
tude); Zone 2, ~18 to 40 km (between −5.97° and − 5.77° latitude);
and Zone 3,> 40 km from Jakarta (north of −5.77° latitude) (Fig. 4;
Cleary et al., 2016). Coral reefs in Zone 1 declined rapidly and early,
and had low diversity and percent cover, as well as relatively small
colony size, by the 1980s (Moll and Suharsono, 1986; Cleary et al.,
2014). Cleary et al. (2014) subsequently observed further declines in
inshore coral cover from 10% in 1985 to<5% by 1995. By 2005, ac-
roporids and milleporids were not recorded on reefs in Zone 1 (van der
Meij et al., 2010). Although corals in the families Merulinidae (taxa

Fig. 3. Percent cover of hard corals with increasing distance from the
Singapore's city centre (a) and over time (b). Points represent mean values and
bars show the maximum standard deviation across years (a) or sites (b). Data
are shown for two depths: shallow (circles: 3–4m, gray) and deep (triangles:
6–7m, black).
Source: Guest et al. (2016).
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previously included in Faviidae; sensu Huang et al., 2011), Poritidae,
Fungiidae, and others persisted (van der Meij et al., 2010), overall coral
cover remained low in 2005 (Cleary et al., 2014). More recent surveys
in 2011 and 2012 show little change in coral cover (Baum et al., 2015,
2016a) and continued low diversity of other taxa (Cleary et al., 2016) in
Zone 1.

Further offshore, coral reefs have also declined, partly due to
bleaching (Brown and Suharsono, 1990; Hoeksema, 1991), but their

trajectory has been variable among sites. Overall, coral cover decreased
from 50 to 30% in Zone 2 and from 74 to<20% in Zone 3 between
1985 and 1995 (Cleary et al., 2014). In Zone 2, these decreases were
driven most by losses in submassive corals. In Zone 3, losses of both
massive and submassive coral growth forms, and particularly of the
genus Porites, were widespread, as were declines in the branching
corals, Seriatopora and Acropora (Cleary et al., 2014). In the decades
that followed, coral cover throughout Zone 3 and at some sites in Zone

Fig. 4. Map of Jakarta's shoreline and neighboring islands. Numbers represent survey sites where coral cover data shown in Fig. 5 were collected.
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2 fluctuated, rebounding by 2005 and then decreasing again by 2011,
following the 2010 thermal bleaching event. Recent temporal fluctua-
tions in Zone 3 have been associated primarily with changes in non-
Acropora branching and submassive corals. During this same period,
Cleary et al. (2014) noted a gradual increase in Acropora to> 10% in
Zone 3 by 2011.

2.3. Hong Kong

Hong Kong is a city of 7.3 million, located at 22° N latitude, with a
collective land area of 1106 km2 comprising several land masses, in-
cluding Hong Kong Island, the New Territories and Kowloon, and 236
islands and islets (Fig. 6). Similar to Jakarta and Singapore, Hong Kong
is a major shipping and commercial centre with a long history of marine

contamination, nutrient enrichment, and elevated sedimentation rates,
which are likely perpetuated by ongoing land reclamation and dredging
activities (Goodkin et al., 2011). Benthic communities in the area are
also strongly influenced by freshwater inputs from the Pearl (Zhujiang)
River, 80 km west of Hong Kong. Surface salinities can drop below
22 PSU and sea surface temperature can fall below 15 °C during periods
of high riverine flow. Southwest to northeast gradations in salinity and
temperature are also evident throughout the year due to fluvial inputs
(Fabricius and McCorry, 2006).

Despite sub-optimal temperature and salinity conditions, over 90
species of hard coral have been documented in Hong Kong (Duprey
et al., 2016). Hard coral colonies are primarily limited to depths < 5m
(Morton, 1994). Many of the taxa present are slow growing and long-
lived (Goodkin et al., 2011). Although there is little evidence of long-
term accretion of reefs (both historically and presently), hard corals are
a major component of sessile subtidal assemblages in the Hong Kong
area (Goodkin et al., 2011). In some locations, particularly on the
northeast side of the city where freshwater input from the Pearl River is
limited, coral cover commonly exceeded 75% as recently as the 1980s
(Scott, 1990). This cover declined over subsequent decades (Fig. 7), and
particularly during a series of coral mortality events in the early 1990s.
Coral cover exceeding 50% has not been uncommon in more recent
surveys in the 2000s and 2010s (Duprey et al., 2016), but there has
been a gradual shift in coral composition. Morton (1994) noted a re-
duction in branching and plate-like acroporids in the 1980s, while
massive growth form corals such as merulinids have persisted
(Collinson, 1997; Lam et al., 2007).

Temporal and spatial gradients in Hong Kong's coral assemblages
are heavily influenced by eutrophication and water quality (Morton,
1989; Scott, 1990). Data from multiple surveys conducted between
1998 and 2006 indicate that chlorophyll-a and inorganic nutrients are
strong predictors of hard coral assemblages. Coral cover and richness
tend to be greatest where chlorophyll-a is< 2 μg/L, dissolved inorganic
nitrogen is< 2 μM, and dissolved inorganic phosphorus is< 0.1 μM,
and is also weakly negatively correlated with suspended particulate
matter (Duprey et al., 2016). These water quality parameters vary
considerably over small spatial scales due to numerous input sources
throughout Hong Kong. The city's shoreline is also highly complex
(Fig. 6) and coral cover data available for this review were available
from a relatively limited range of distances from the city centre (Fig. 7).
For these reasons, no conclusions can be made regarding urban-related
inshore-offshore gradients in Hong Kong. However, as in other case
study cities, coral genera such as Acropora have been particularly ne-
gatively affected by urban-related abiotic conditions and are rare on
Hong Kong reefs (Duprey et al., 2016).

2.4. Naha, Japan

Naha, the capital city of Okinawa Prefecture (Japan), is positioned
at the mouth of the Kokuba River (Fig. 8), on the west coast of Okinawa
Main Island. It has the highest latitude of the case study cities con-
sidered in this review (26°N latitude). Waters surrounding Naha are
warmed by the Kuroshio Current, which travels northward from the
equator as the eastern boundary current of the North Pacific Gyre. With
a human population of 0.3 to 1.2 million, depending on the geographic
boundaries used, Naha is relatively small compared with the case study
cities discussed this far. Okinawa Main Island has a total land area of
1208 km2 and is inhabited by nearly 1.5 million people. Population
density is greatest on the southern half of the island, where Naha is
located; urbanization throughout the island likely influences the health
of adjacent reefs. In particular, rivers in southern Okinawa deliver high
concentrations of nutrients and pollutants such as endocrine disrupters
and bisphenol A (BPA) to coastal waters (Shilla et al., 2013).

The coastline of Naha is almost completely artificial, with extensive
land reclamation of shallow fringing reefs since the reversion of
Okinawa to Japanese control from the United States in 1972

Fig. 5. Percent cover of hard corals with increasing distance from the Jakarta's
city centre (a) and over time (b). Points represent mean values averaged across
sites. Bars show the maximum standard deviation across years (a) or sites (b). In
(a), circles represent sites for which only mean coral cover data were available
and solid circles represent sites with variance estimates. In (b), coral cover over
time is summarized separately for three spatial zones: Zone 1 (circles: closest to
Jakarta, south of −5.97° latitude), Zone 2 (triangles: midshore zone between
−5.97° and − 5.77° latitude) and Zone 3 (squares: farthest from Jakarta, north
of −5.77° latitude).
Sources: Cleary et al. (2006, 2008, 2016) and Baum et al. (2016a).
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(Kuwahara, 2012; Reimer et al., 2015). Environmental assessment and
protection laws remain generally weak in Japan (e.g. “coral friendly
port construction”, Maekouchi et al., 2008), and loss of fringing coral
reefs due to land reclamation has been controversial, with statements
requesting greater protection having been released publicly by nu-
merous academic and scientific societies. Despite this, reclamation is
still ongoing with the expansion of Naha Airport, and at numerous other
locations within Okinawa Main Island (Reimer et al., 2015).

Fringing and patch reefs form throughout Okinawa, including in
urban waters immediately adjacent to Naha (Shilla et al., 2013). A total
of 340 species of hard coral have been documented in the Okinawa
Islands (Nishihira and Veron, 1995; Tsuchiya et al., 2004; Hongo and
Yamano, 2013). This level of hard coral species richness is very high
compared with that at similar latitudes on the Great Barrier Reef
(Tsuchiya et al., 2004). However, percent cover of hard corals varies
widely on Okinawa Main Island (Fig. 9), and tends to be particularly
low (< 20%) near river outputs (Hongo and Yamano, 2013; Shilla
et al., 2013). Unfortunately, there have been few studies documenting
spatial patterns in coral cover with increasing distance from Okinawa
Island or from Naha. To some extent, this is due to Okinawa reefs
primarily occurring close to shore. Data from the Japanese Ministry of
Environment showed little difference in hard coral cover on reefs sur-
rounding Naha and those in the nearby uninhabited Chibishi Islands
(~8 km to the west; Fig. 9). While data across the Ryukyu Island chain
(see Lecchini et al., 2003), which extends hundreds of kilometers to the
south (as well as to the north), may thus constitute the best available
proxy of coral cover relative to urbanization, they are confounded by a
natural thermal gradient across the archipelago, and were thus ex-
cluded from this review.

Percent cover of hard corals in Okinawa is thought to have declined
considerably over the latter part of the 20th century (Fig. 9; Hongo and

Yamano, 2013). Crown-of-thorns sea stars, Acanthaster sp., have played
a major role in this decline, with particularly dramatic predation events
occurring in the 1970s and 1980s (Tsuchiya et al., 2004). Most authors
refer to Acanthaster planci, which is an Indian Ocean species, whereas
the name of the Pacific species still needs to be established (Vogler
et al., 2008; Haszprunar et al., 2017). Coral cover also decreased as a
result of thermal bleaching events in the 1980s, 1998, and 2001
(Yamazato, 1999; Loya et al., 2001), as well as in 2016–2017 (Kayanne
et al., 2017; Ministry of the Environment of Japan, 2017). Temporal
declines have been particularly pronounced among branching and
tabular hard coral taxa, with Acropora decreasing dramatically by the
late 2000s. Stress-tolerant genera such as Porites, Dipsastraea, Favites,
and Leptastrea have persisted over recent decades and now have the
greatest relative abundance surrounding Okinawa Main Island (Hongo
and Yamano, 2013).

Water quality is thought to be an important factor dictating both
spatial and temporal patterns in coral cover on Okinawa reefs (Ramos
et al., 2004; Imo et al., 2007, 2008; Shilla et al., 2013; Reimer et al.,
2015), although in general water quality is good, possibly due to Naha's
position next to oceanic waters. Terrestrial soil from Okinawa is iron-
rich and red in color, and altered runoff patterns combined with in-
creasing nutrient influx from terrestrial sources has been highlighted as
a major driver of reef decline (Shilla et al., 2013). Okinawa Prefecture
has taken steps to reduce runoff in recent years (Okinawa Prefecture,
2016). Whether related to these mitigation measures or other factors,
coral cover in the Naha area appeared to increase from 2004 to 2009
according to surveys from the Japanese Ministry of Environment
(Fig. 9). This recovery pattern was not detected by Hongo and Yamano
(2013); their study included sites on both the west and east coasts of
Okinawa Main Island, yet included few locations near central Naha
(Hongo and Yamano, 2013).

Fig. 6. Map of Hong Kong. Numbers represent survey sites where coral cover data shown in Fig. 7 were collected.

E.C. Heery et al. Marine Pollution Bulletin 135 (2018) 654–681

662



2.5. Other examples

In addition to the four major cities discussed above, we compiled
information on coral reefs and the factors shaping reef health from
seven additional coastal cities: Pattaya (near Bangkok, Thailand), Nha
Trang (Vietnam), Davao City (southern Mindanao, Philippines), Kota
Kinabalu (northwest Sabah, Malaysia), Bandar Seri Begawan (Brunei
Darussalam), Padang (West Sumatra, western Indonesia), and Makassar
(South Sulawesi, eastern Indonesia) (Fig. 1). All seven cities are located
in the tropics. The cities in Brunei, Malaysia, eastern Indonesia, and the
Philippines are situated in the Coral Triangle, which is the centre of
maximum marine biodiversity, depending on how its boundaries are
defined (Hoeksema, 2007; Huang et al., 2015; Veron et al., 2015; Asaad
et al., 2018).

Table 3 summarizes geographical and social-economic aspects,
coastal and reef morphology, river discharge and pollution, potentially
harmful human activities, other factors causing reef degradation, coral
and fish diversity, and reef mitigation for each city. Sedimentation

through river discharge, pollution, and unsustainable fisheries were the
most common and severe factors impacting the health of the reefs.

2.5.1. Pattaya (near Bangkok, Thailand)
Pattaya is situated at the northeastern side of a shallow, semi-en-

closed bay, recognized as Inner Bay of Bangkok, where water circula-
tion is limited (Fig. 1; Tanaka et al., 2013). The reefs off Pattaya are
50 km from Bangkok and even closer to Thailand's largest industrial
harbor, which is 13 km north of Pattaya (Table 3). Although commer-
cial fisheries do not occur in the vicinity of Pattaya's reefs, most litter on
local reefs consists of lost nets (Table 3). Sewage and water discharge
from large rivers are the main sources of high sediment and nutrient
loads (Table 3). The major degrading impacts of urbanization on Pat-
taya's reefs consist of sedimentation from coastal development, water
pollution, and mass tourism (Table 3). Bleaching, ocean acidification,
and flooding associated with extreme climate variability are also im-
portant stressors (Pengsakun et al., 2012).

2.5.2. Nha Trang (Vietnam)
Nha Trang is positioned in southeast Vietnam and the western part

of the South China Sea (Fig. 1), where the continental shelf is narrow
and subjected to summer upwelling, which results in low summer
temperatures (Binh et al., 2015). Fringing reefs occur along the main-
land and around large islands in Nha Trang Bay (Nguyen et al., 2013)
and have been subjected to pollution and sedimentation from river
discharge and port dredging (Table 3). Nha Trang Bay is part of the
most diverse region within the western South China Sea (Huang et al.,
2016). Since the upwelling helps prevent thermal stress and bleaching,
the reefs in Nha Trang Bay are considered regional refugia for reef re-
plenishment (Vo et al., in press). The major impacts of urbanization on
Nha Trang Bay reefs consist of dredging, land filling and construction
works, resulting in increased sedimentation during the rainy season
(Table 3).

2.5.3. Davao City (South Mindanao, Philippines)
Davao City is located deep inside Davao Gulf at the southern

Philippine island of Mindanao (Fig. 1). It is the third most populous
metropolitan area of the Philippines (Feldman, 1975). There are two
major ports, Davao City and Panabo City. Corals live on fringing reefs
along the main coast and around two large islands in front of the city.
The seafloor here is much shallower than the southern part of the bay
(Bos et al., 2008). The reefs of Davao Gulf are exposed to sediment
discharge from rivers and creeks (Table 3). Major degrading effects of
urbanization on nearby reefs are caused by nearshore pollution from
gold mining, cement production, domestic litter, and agrochemicals, as
well as ongoing eutrophication, sedimentation, coastal development,
harbor construction, tourism, and unsustainable fisheries (Table 3).

2.5.4. Kota Kinabalu (Sabah, Malaysia)
Kota Kinabalu, the capital of Sabah, is positioned near the north-

eastern tip of Borneo (Fig. 1). Corals can be found on fringing reefs
around five islands in front of the city and on some offshore patch reefs
(Table 3). The five islands form the Tunku Abdul Rahman Park, which
is a popular tourist attraction for marine recreational activities. Reefs in
the north and west of the islands are exposed to waves and sea swells
forming rocky outcrops, while reefs in the south and east that are facing
the mainland have sheltered conditions (Wood, 1979). There are two
major industrial harbors, one in the city and one in nearby Sapangar
Bay. Commercial fishing is prohibited in inshore waters (Shah and
Selamat, 2016). Degrading effects of urbanization on nearby reefs are
predominantly caused by sewage, pollution from industry, tourism, and
sedimentation resulting from land clearing, dredging, and reclamation
works (Table 3).

2.5.5. Bandar Seri Begawan (Brunei Darussalam)
Bandar Seri Begawan is the capital of Brunei Darussalam, which is

Fig. 7. Percent cover of hard corals with increasing distance from the Hong
Kong's city centre (a) and over time (b). Points represent mean values and bars
show the maximum standard deviation across years (a) or sites (b); data points
for which only mean coral cover data were available are shown with open
circles.
Source: K.T. Wong et al. (2018).
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located on the northern Borneo coast (Fig. 1). Together with satellite
urban developments, it forms the largest population centre in Brunei.
Port activities are concentrated in the shallow, sheltered, and muddy
Brunei Bay known as Inner Brunei Bay (Chua et al., 1987). There are no
fringing reefs but some coastal coral communities occur nearby. Off-
shore coral reefs are mainly submerged shoals with high species rich-
ness and live coral cover values, indicating minimal effects of urbani-
zation, although water visibility is poor inshore (Table 3). Rocky
outcrops in the turbid nearshore zone are dominated by gorgonian whip
corals and sea fans (Lane, pers. obs), while some muddy, nearshore
shoals are inhabited by other benthic fauna (Reimer et al., 2012). Reefs
close to oil and gas platforms are difficult to access (McManus, 2017)
but may become covered by slurry and scrap metal (Hoeksema and
Lane, pers. obs.). Most of Brunei's reefs are considered potential thermal
refugia during periods of elevated sea surface temperature (Lane, 2011)
and could become important sources of coral recruits to re-seed
neighbouring reefs.

2.5.6. Padang (West Sumatra, western Indonesia)
Padang, the capital of West Sumatra, is situated on the west coast of

Sumatra (Fig. 1). It is served by two sea ports. Most reefs off Padang are
patch reefs arranged in two rows along a relatively steeply sloping deep
shelf that is semi-enclosed by large continental islands (Table 3).
Nearshore reefs are exposed to sedimentation from rivers, especially
after heavy rainfall (Efendi, 1995). They are also affected by coastal
development and increasing tourism. The rivers and port are sources for
agrochemicals and industrial pollutants (Table 3). Large-scale coral
death, which has occurred around most of the offshore patch reefs
down to 20m depth, started around 1994–1995 and was attributed to
coral bleaching, which was succeeded by red tides in 1997 (Table 3).

2.5.7. Makassar (South Sulawesi, eastern Indonesia)
Makassar (named Ujung Pandang from 1971 to 1999) is the capital

of South Sulawesi and the largest city and port in eastern Indonesia,
with a well-documented reputation for fisheries (Table 3). It is located
in the southern part of Makassar Strait (Fig. 1) and is considered the
maritime gateway for eastern Indonesia. Its reef system is known as the
Spermonde Archipelago and consists of many patch reefs, which are
either cay-crowned or submerged and arranged in lines parallel to the
coast, with clear nearshore-offshore gradients (Table 3). Most of the
reef cays are densely inhabited (Amri et al., 2017). The coastal area and
islands of Makassar have received much research attention (Table 3),
perhaps more than reef systems near other cities in Indonesia.

2.5.8. Common patterns
The seven urban areas differ in population size and reef damage,

ranging from Bandar Seri Begawan with smallest number of people and
the least affected reefs, as opposed to Davao City and Makassar. Their
reefs are exposed to terrigenous run-off as primary source for sedi-
ments, mostly through river discharge. All cities have harbors, which
need dredging (Erftemeijer et al., 2012), which together with shipping
activities in shallow water will cause sediment resuspension. The cities
have many other different kinds of pollution in common, which are
related to sewage, litter, industrial activities, and more. All are directly
or indirectly related to population size. Unsustainable fisheries is a
common factor but perhaps less obviously related to urban reefs, be-
cause fishermen usually do not live in cities and the proximity of cities
would facilitate management and inspections. On the other hand, de-
mand for seafood is larger near cities. The common occurrence of en-
vironmental gradients with increasing distance away from cites is not
surprising. There is no clear relation with bleaching, coral diseases and

Fig. 8. Map of Okinawa Main Island and surrounding islands, with Naha labelled. Numbers represent survey sites where coral cover data shown in Fig. 9 were
collected. Points 6 through 11 surround the Chibishi Islands.
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coral predation, which are not all well monitored perhaps. Important
developments are land reclamation on top of reefs or in close proximity
and the construction of seawalls. The latter may not be detrimental as
long as seawalls and concrete structures do not facilitate the settlement
of non-native species (Glasby et al., 2007; Chapman and Underwood,
2011) or enhance the dominance of certain native species, such as
Tubastraea spp. (Ho et al., 2017).

3. Effects of urbanization on coral reefs

Urbanization results in a variety of environmental changes that
impact hard corals (Table 1). Coral reefs in urban areas have been
subjected to and shaped by these changes over many decades, and in
some cases over multiple centuries. The cities considered in this review
indicate that urban coral reefs share several key characteristics, which

we discuss below.

3.1. Domed growth forms and low reef complexity

Like other degraded reefs, urban coral reefs were dominated by
stress-resistant, “domed” growth form (massive, submassive, and en-
crusting) species that generate reefs of moderate to low structural
complexity (or ‘architectural complexity’, sensu Tews et al., 2004;
Harris et al., 2018). Particularly well represented were massive, sub-
massive, and encrusting species of merulinids, Porites, and Montipora
(Table 4). Of the most common taxa for which life-strategy designations
(sensu Darling et al., 2012) were available, nearly all were considered
“stress-tolerant” or “generalists”. Branching, competitive taxa, such as
Acropora spp., were uncommon in heavily urbanized areas (within
20 km for the main case study cities). Domed coral growth forms tend to
be favoured under high sedimentation, low light conditions because
they optimize sediment shedding while maximizing photosynthesis
(Erftemeijer et al., 2012). Although other growth-forms can also be
successful, particularly where aided by alternative adaptations to se-
diment and low light. Mushroom corals, which are free-living and rid
themselves of settling particles through pulsed inflation and ciliary
action in addition to a convex upper surface (Hoeksema and Moka,
1989; Bongaerts et al., 2012). They were found in dense multi-species
assemblages on nearshore reefs (< 5 km) in Singapore, Makassar, and
Nha Trang, (Hoeksema and Koh, 2009; Hoeksema, 2012a, pers. obs.).

Shifts in three-dimensional structure of reefs have important im-
plications for ecosystem functioning (Done et al., 1996). Refugia tend to
be limited on low-complexity reefs. This can increase predation risk,
reduce grading activity, and coincide with reduced species richness and
abundance of reef fishes and invertebrates (Almany, 2004; Idjadi and
Edmunds, 2006; Wilson et al., 2007). Structural complexity also tends
to be negatively correlated with algal cover and urchin densities
(Graham and Nash, 2013), and low-complexity reefs may be less likely
to recover from disturbance events, particularly in the presence of high
nutrient loads and other stressors (Graham et al., 2015). Structurally
complex reefs additionally provide a variety of ecosystem services to
coastal populations, including slowing water flow rates and serving as
natural breakwaters that reduce shoreline erosion and inundation
during storms (Moberg and Folke, 1999), as well as a suite of other
services relating tourism (Graham and Nash, 2013) and exploitable
resources.

Similarities in the taxa that were prominent in heavily urbanized
areas suggest that the selective pressure hard corals face as a result of
urbanization is similar regardless of the city where they are located.
While urbanization (in combination with meso-scale processes) may
functionally eliminate certain coral taxa (e.g. Acropora), it likely leads
to more nuanced ecological and evolutionary trajectories for other coral
species. Only a small minority of coral taxa, such as Oulastrea crispata
(Cleary et al., 2016), appear to respond opportunistically to urban-re-
lated environmental changes (Sawall et al., 2011). For the remainder of
taxa that occur in urbanized environments, stress-tolerance (Madin
et al., 2016), ecological versatility (Graham, 2007), and phenotypic and
trophic plasticity (Todd et al., 2004; Todd, 2008; Seemann et al., 2013;
Sawall et al., 2014) are likely essential. The ability to capitalize on
reduced interspecific competition associated with urban-related abiotic
conditions is probably advantageous. Understanding the ecological and
evolutionary trajectories of urban coral reefs may be key for developing
ecological engineering and mitigation strategies that maintain eco-
system functions and services that city populations value.

3.2. Spatio-temporal characteristics

3.2.1. Temporal decline followed by fluctuations associated with acute
impacts and rapid recovery

Decreases in coral cover and species richness over time have been
widely documented throughout the region (Pandolfi et al., 2003;

Fig. 9. Percent cover of hard corals with increasing distance from Naha's city
centre (a) and over time (b). Points represent mean values while bars represent
maximum standard deviations across years or sites. For spatially distributed
data (a), circles represent sites on Okinawa Main Island while triangles re-
present sites in the nearby uninhabited Chibishi Islands. Temporally distributed
data were available from two separate sources (shown as diamonds or circles in
(b)), which included different sites and covered different time periods.
Sources: (a) Ministry of the Environment of Japan (2017); (b) Hongo and
Yamano (2013) and Ministry of Environment of Japan, MOA (2017).
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Table 3
Comparison of coastal waters and coral reef characteristics of seven additional case study cities. All additional case study cities are located in tropical areas within
Asia (Fig. 1).

City Pattaya Nha Trang Davao City Kota Kinabalu Bandar Seri
Begawan

Padang Makassar

Coordinates 12°55′N
100°52′E

12°15′N
109°11′E

07°04′N 125°36′E 05°58′N
116°04′E

04°55′N 114°55′E 00°57′S
100°21′E

05°08′S 119°25′E

Population in 2018 (×106)[1] 0.1 0.28 1.21[34] 0.46 0.06[65] 0.84 1.32
Harbor/shipping activities nearby (Y/

N)
Y[2] Y[20] Y Y Y Y[76] Y[88]

Fringing reefs (F), patch reefs (P), or
both (FP)

F FP F FP P[66] PF P[89]

River discharge on reefs (Y/N) Y[3] Y[21] Y[35] Y[46] Y[67] Y[77] Y[91]

Sewage discharge nearby (Y/N) Y[3] Y[21] Y Y[47] N[68,69] Y[77] Y[90,91]

High nutrient levels (Y/N) Y[4] N[22] Y[35] Y[48] N[69] Y[77] Y[92]

Elevated chl-a concentrations (Y/N) Y[5] N[22] – Y[49] Y[70] Y[78] Y[91]

High heavy metal concentrations Cd Cu Hg Pb[6] Cd Hg Pb[23] Hg[36] Cd Cr Cu Pb
Zn[50]

–[69] – Cd Cr Cu Pb Zn[93]

Industrial pollution (Y/N) Y[2] – Y[35,36] Y[51] N[68] Y[79] –
High sedimentation (Y/N) Y[3,7] Y[21] Y[35] Y[52] Y[67] Y[77] Y[89]

Observations on litter (Y/N)[8] Y[9] Y[24] Y[37] Y[53] Y Y[77] Y[94]

Effects from fisheries and mariculture
(Y/N)

Y[9] Y[21] Y[38] Y[54] Y[67] Y[80] Y[95]

Damage from marine tourism (Y/N) Y[10] Y[25] Y Y[55] N Y[79] N[96]

Harvesting for curio and aquarium
trade (Y/N)

N Y[26] Y[39] Y[46,56] N Y[79] Y[97]

Environmental gradients in impact (Y/
N)

Y[11] Y[27] Y[40] Y[57] Y[67] Y[81] Y[98]

Estimated impact radius city on reefs
(km)

10–15 1–5 1–30 1–10 1–4 1–5 1–36

Reef degradation (Y/N) Y[12] Y[22] Y[40] Y[52] Y[24,67] Y[76–81,85] Y[95]

Land reclamation present/planned (Y/
N)

N Y[24] – Y[58] Y N Y[99]

Coral bleaching (Y/N) Y[13] Y[28] Y Y[59] Y[71] Y[77,80,82] Y[100]

Coral diseases (Y/N) Y[14] Y[29] – – – – Y[101]

Harmful algal blooms (Y/N) Y[15] Y[30] Y[41] Y[46] Y[70] Y[82] N[102]

Coral predation and bioerosion (Y/N) Y[16] Y[28] Y[42] Y[60] Y[72] Y[83] Y[83,103]

Estimated coral species richness 50[17] 350[31] > 100[43] 203[61] 400[73] 164[76,84] 270[104]

Estimated reef fish species richness 83[18] 528[32] > 1000[44] 573[62] 713[74] 362[85] > 400[105]

Seawalls as artificial substrate (Y/N) Y Y – Y[63] Y[67] Y[76] N
Coral reef restoration (Y/N) Y[19] Y Y Y Y Y[86] N
Marine park (Y/N) N Y[33] Y[45] Y[64] N[75] Y[87] N[106]

[1] http://worldpopulationreview.com; [2] Senarak (2016), Vongvisessomjai (2017); [3] Nakano et al. (2009), Sutthacheep et al. (2009, 2017), Sangmanee et al.
(2012), Sangaroon et al. (2016); [4] Cheevaporn and Menasveta (2003), Musika et al. (2014); [5] Buranapratheprat et al. (2008, 2009), Doydee et al. (2010); [6]
Hungspreugs and Yuangthong (1983), Cheevaporn et al. (1995), Thongra-ar and Parkpian (2002), Thongra-ar et al. (2008), Tanaka et al. (2013), Musika et al.
(2014), Kornkanitnan et al. (2015), Qiao et al. (2015), PCD (2016); [7] Sudara et al. (1991), Cheevaporn and Menasveta (2003), Srisuksawad et al. (2013); [8] origin:
industrial, household, and fisheries; [9] lost fishing gear on reefs (Suebpala et al., 2017; Sutthacheep et al., 2017); [10] poor waste management for mass tourism
(Phillips, 2015); [11] Pengsakun and Yeemin (2011), Samsuvan et al. (2015); [12] unpublished or unofficial data; [13] Yeemin et al. (2009), Pengsakun and Yeemin
(2011), Pengsakun et al. (2012), Sutthacheep et al. (2012); [14] Saengsawang and Yeemin (2009), Samsuvan et al. (2015); [15] Cheevaporn and Menasveta (2003),
Lirdwitayaprasit et al. (2006), Musika et al. (2014); [16] Ruengsawang and Yeemin (1998), Sangmanee et al. (2012, 2015), Thummasan et al. (2015); [17] Sakai
et al. (1986), Chou et al. (1991), Putchim et al. (2002), Hoeksema and Yeemin (2011); [18] Manthachitraa and Sudara (2002), Suantha and Yeemin (2011),
Yucharoen et al. (2012); [19] Yeemin et al. (2006), Kanchanopas-Barnette et al. (2012); [20] there is a port for fishing boats. Nha Trang port was used for commercial
transportation but is now serving tourism and ferries; [21] Vo (2011), Latypov (2006), Nguyen et al. (2013), Hoang et al. (2015), Tkachenko (2015); [22] Tkachenko
(2015), Thu et al. (2016), Tkachenko et al. (2016); [23] Nghia et al. (2009); [24] local newspapers; [25] untrained recreational snorkelers; [26] Vo (2002), Nguyen
and Phan (2008); [27] Vo et al., 2004; [28] Long and Vo (2014); [29] Beleneva et al. (2005); [30] Tang et al. (2004); [31] Vo et al. (2004), Dautova et al. (2007),
Hoeksema et al. (2010), Latypov (2011); [32] Long (2009); [33] Hon Mun Island Marine Park or Nha Trang Protected Area (Kaida and Dang, 2016); [34] population
size of the Davao Gulf conurbation is much larger; [35] Alcala et al. (2003), Villanoy (2009), Fraser et al. (2014); [36] Appleton et al. (1999), Drasch et al. (2001),
Abarquez (2015); [37] Villanoy (2009), Abreo et al. (2016); [38] Nañola and Ingles (2003), Armada (2004), Mamauag (2004), Rosario (2006), Subaldo (2011); [39]
Ochavillo et al. (2004); [40] Gumanao (2009), Magdaong et al. (2014); [41] A.R. Bos. (pers. obs.); [42] Acanthaster (Bos et al., 2013) and Drupella (Gumanao, pers.
obs.); [43] a conservative estimate based on the presence of 56 scleractinian genera and 35 mushroom coral species (Gumanao, 2009; Bos and Hoeksema, 2017); [44]
Nañola and Ingles (2003), Bos (2012, 2014), Bos and Gumanao (2012, 2013), Bos and Smits (2013), Bos and Hoeksema (2015, 2017), Gumanao et al. (2016), Bos
et al. (2018); [45] Mancao et al. (2008), Horigue et al. (2012), Cabral et al. (2014); [46] Wood (1977, 1979); [47] Aripen et al. (2002); [48] Spait (2001), Jakobsen
et al. (2007); [49] Abdul-Hadi et al. (2013), Gallagher et al. (2016); [50] Ali et al. (2014); [51] Ali et al. (2015); [52] Mathias and Langham (1978), Pilcher and
Cabanban (2000), Spait (2001), Theng et al. (2003), Waheed et al. (2007); [53] Adnan et al. (2015), Mobilik et al. (2016); [54] Woodman et al. (2004), Reef Check
Malaysia (2010); [55] Cabanban and Nais (2003); [56] Phillips (1979); [57] Waheed and Hoeksema (2014); [58] Spait (2001); [59] in 2012 and 2016 (Aw and Syed
Hussein, 2012; Waheed pers. obs.); [60] Syed Hussein and Nooramli (2016); [61] Nyanti and Johnston (1992), Waheed et al. (2011), Huang et al. (2015), Waheed
and Hoeksema (2014); [62] Townsend (2015); [63] Pang et al. (2016); [64] Tunkul Abdul Rahman Park (Nyanti and Johnston, 1992); [65] the population of the
Brunei-Muara District conglomerate is much larger; [66] Chou et al. (1987), DeVantier and Turak (2009), Turak and DeVantier (2009); [67] Turak and DeVantier
(2009), Lane and Lim (2013); [68] De Silva (1987); [69] Yong et al. (2006), most reports are about Brunei Bay and not about the offshore reefs (e.g. Adiana et al.,
2017; [70] Subramaniam et al. (1994), Alkhadher et al. (2015); [71] Lane (2011); [72] Acanthaster and Drupella (Turak and DeVantier, 2009; Lane, 2011, 2012); [73]
Turak and DeVantier (2011), Benzoni et al. (2014), Hoeksema and Lane (2014), Huang et al. (2015, 2016), Lane and Hoeksema (2016); [74] Allen (2009), Tornabene
et al. (2016); [75] three offshore marine protected areas (MPAs) to be legally gazetted; [76] Kunzmann and Samsuardi (2017); [77] Kunzmann and Efendi (1994),
Efendi (1995), Kunzmann (2002); [78] Praseno et al. (1999); [79] Efendi and Syarif (1995); [80] Kunzmann (1997, 2002) [81] Johan et al. (2016); [82] Abram et al.
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Hoegh-Guldberg et al., 2007), and urban areas are no exception. It is
unclear whether the trajectory of temporal declines is comparable in
urban versus more remote settings. Presumably, localized drivers of
coral reef degradation arose in population centres first. Certainly
fishing pressure and resource extraction were major drivers in the early
development of cities like Jakarta (van der Meij et al., 2010), and may
have been more intensive near settlements than in other areas during
this period (Kirby, 2004; Van Houtan and Kittinger, 2014). However,
the absence of time series data in most coastal cities makes it difficult to
assess precisely when declines began and how rapidly they progressed
(van der Meij et al., 2010). Some insight into historical patterns may be
gained from museum specimens (Hoeksema and Koh, 2009; Hoeksema,
2015) and by examining historical social and economic activities that
likely impacted coral reef health (Neo and Todd, 2012), but studies that
directly compare long-term growth patterns of hard corals in heavily

versus minimally urbanized locations are lacking.
In case study cities we reviewed, declines in urban coral reefs

throughout the 20th Century were followed by fluctuations in coral
cover in the 2000s and 2010s (Figs. 3, 5, 7, and 9). These fluctuations
may simply be a function of asymptotic population dynamics, wherein
urban coral reefs – having “collapsed” (sensu Jackson et al., 2001) into
a heavily degraded state – fluctuate stochastically as this state is more
or less maintained. Under this hypothesis, it is important to note how
different this heavily degraded state looks across the case study cities;
in Jakarta, the decimation of reefs within 20 km of the city centre
manifest in extremely depauperate coral assemblages, while in Singa-
pore, inshore reefs had comparably higher species richness (Fig. 10).
Alternatively, recent fluctuations could be due to the combination of
eco-evolutionary trajectories and major pulse disturbances. Corals that
persisted in case study cities by the early 1990s were presumably the

(2003), Hoeksema and Cleary (2004), Johan et al. (2016); [83] Acanthaster was observed in 2007 to the south of Padang (Baird et al., 2013); [84] Jonker and Johan
(1999), Hoeksema (2009); [85] Kunzmann et al. (1999), [86] Quinn and Johan (2015); [87] Darmawan et al. (2012); [88] Idris et al. (2017), Nagel (2017); [89]
Wijsman-Best et al. (1981), Hoeksema (2012a), Polónia et al. (2015); [90] Edinger et al. (1998), Kegler et al. (2017); [91] Sawall et al. (2011, 2013), Polónia et al.
(2015), Teichberg et al. (2018); [92] Erftemeijer and Herman (1994), Nasir et al. (2015); [93] Ambo-Rappe (2014), Rukminasari (2015), Najamuddin et al. (2017);
[94] Tahir et al. (2017); [95] Pet-Soede and Erdmann (1998), Pet-Soede et al. (2001), Ferse et al. (2012, 2014), Sawall et al. (2013), Glaser et al. (2015), Schwerdtner
Máñez and Ferse (2010), Navarrete Forero et al. (2017), Glaeser et al. (2018); [96] moderately developed tourism in the city without much damage to reefs (Erham
and Hamzah, 2014; Arief et al., 2017; Hoeksema pers. obs.); [97] Bruckner (2002), Knittweis and Wolff (2010), Ferse et al. (2012), Madduppa et al. (2014, 2018),
Hoeksema (pers. obs.); [98] Cleary et al. (2005), Becking et al. (2006), Hoeksema (2012b), Polónia et al. (2015), Timm et al. (2017); [99] Saleh et al. (2016), Yurnita
et al. (2017); [100] Yusuf and Jompa (2012); [101] Muller et al. (2012); [102] Mujib et al. (2015); [103] Acanthaster (Plass-Johnson et al., 2015b); [104] Best et al.
(1989), Hoeksema and Best (1991), Hoeksema (2012a); [105] Erftemeijer and Allen (1993), Iwatsuki et al. (2000), Sudirman et al. (2009), Burhanuddin and Iwatsuki
(2010, 2012), Pogoreutz et al. (2012), Burhanuddin and Erviani (2016), Plass-Johnson et al. (2018); [106] discussed but not implemented (Glaser et al., 2010).

Table 4
Hard coral species that were among the ten most dominant corals in the four main case study cities with respect to percent cover (PC) and frequency of occurrence
(Occ). The table presents the family, maximum depth, growth form, and life strategy (Darling et al., 2012) where available. Rankings of each species in terms of
percent cover and frequency of occurrence are shown as numbers following abbreviations for each city (SG: Singapore, JK: Jakarta, HK: Hong Kong, NH: Naha).

Species Family PC Occ Max depth (m)a Growth form Life-strategy (Darling et al., 2012)

Coeloseris mayeri Agariciidae JK8 5 Massive na
Cyphastrea serailia Merulinidae HK3 20–50 Massive Stress-tolerant
Diploastrea heliopora Diploastreidae SG8 30 Massive Stress-tolerant
Dipsastraea favus Merulinidae SG10 30–50 Massive Stress-tolerant
Dipsastraea speciosa Merulinidae SG4/HK10 20–45 Massive na
Dipsastraea veroni Merulinidae JK4 25 Massive na
Favites abdita Merulinidae HK7 10–50 Massive Stress-tolerant
Favites chinensis Merulinidae HK5 20 Massive Stress-tolerant
Favites halicora Merulinidae JK5 55 Massive Stress-tolerant
Favites pentagona Merulinidae HK1/SG5 40–50 Submassive Stress-tolerant
Favites rotundata Merulinidae JK3 20 Massive na
Favites valenciennesi Merulinidae SG9 30 Submassive Stress-tolerant
Goniastrea pectinata Merulinidae SG5 SG6 20–40 Submassive na
Goniastrea retiformis Merulinidae JK7 2–20 Massive Stress-tolerant
Goniopora columna Merulinidae SG6/JK10 JK6 15 Columnar na
Leptastrea purpurea Incertae sedis NH9 2–40 Encrusting Weedy
Leptastrea transversa Incertae sedis JK7 JK8 20–50 Encrusting na
Merulina ampliata Merulinidae SG3 SG3 20–50 Laminar Generalist
Montipora digitata Acroporidae JK4 NH9 5 Branching Competitive
Montipora informis Acroporidae JK3 JK9 10–20 Massive na
Montipora peltiformis Acroporidae HK8 30 Submassive na
Mycedium elephantotus Merulinidae SG7 SG7 20–70 Laminar Generalist
Oulastrea crispata Incertae sedis JK1 JK1 10 Encrusting na
Oulophyllia crispa Merulinidae NH6 40 Massive Stress-tolerant
Pachyseris speciosa Incertae sedis SG1 SG2 30–88 Laminar Generalist
Pavona decussata Agariciidae JK9 2–20 Digitate Generalist
Pectinia paeonia Merulinidae SG2 SG10 20–25 Laminar na
Platygyra acuta Merulinidae HK4 20 Massive na
Platygyra lamellina Merulinidae JK10 30 Massive Stress-tolerant
Platygyra sinensis Merulinidae SG9 SG8 30 Massive Stress-tolerant
Plesiastrea versipora Incertae sedis HK6 20–40 Massive Stress-tolerant
Podabacia crustacea Fungiidae SG4 20–50 Laminar na
Porites lobata Poritidae JK5 30–67 Massive Stress-tolerant
Porites lutea Poritidae JK2 JK2/HK9 20–70 Massive Stress-tolerant
Porites rus Poritidae JK6 20 Digitate Weedy
Psammocora profundacella Psammocoridae NH8 HK2 20–50 Submassive na
Turbinaria peltata Dendrophylliidae SG10 20–40 Laminar na

a Max depth represents the range of maximum values recorded across the species' range and is not limited to urban areas.
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product of decades of selective pressure from urban-related abiotic
factors, and might have been expected to proliferate into high-cover,
low-diversity reefs over subsequent decades if regional conditions had
remained relatively constant (we specify constant “regional conditions”
here, as we found no evidence in the literature of recent fluctuations in
localized urban-related abiotic conditions coinciding with observed
variation in coral survey data). Yet, regional conditions have not re-
mained constant. Inter-annual spikes in sea surface temperature led to
multiple regional bleaching events in the 1980s, 1990s, 2000s, and
2010s. These events may have been extreme even for hard coral species
that had survived the selective pressures of urban life over prior dec-
ades. Recent fluctuations under this hypothesis are thus the result of
acute response and recovery among highly stress-adapted corals given
repeated pulse disturbance events.

One noteworthy trait of recent fluctuations in Singapore specifically
was the pace at which they occurred. Coral cover time series data from
Singapore showed relatively rapid recovery following thermal
bleaching events. In 1998, for instance, mean coral cover declined
to< 20% across multiple urban reef sites due to elevated sea surface
temperature (Guest et al., 2016). The 1998 El Niño impacted corals in
more remote settings in the region as well (Goreau et al., 2000). Unlike
their more remote counterparts, however, urban coral reefs in Singa-
pore had rebounded to exceed pre-bleaching levels of total cover within
as little as 5–7 years (Guest et al., 2016). This does not take away from
their more depauperate status (Huang et al., 2009; though there was a
coinciding change in community structure, driven primarily by Mon-
tipora and Plerogyra, as described by Guest et al., 2016); indeed the
lower total richness of hard corals in Singapore may have been among
the characteristics that contributed to rapid recovery rates, along with
pre-selected physiological and morphological traits, altered competitive
dynamics, and other urban-specific ecosystem properties that are yet to
be understood. Whatever the mechanism(s), the rapid recovery of
Singapore's reefs following climate-related disturbances suggests that
unique population dynamics may be at play.

3.2.2. Inshore-offshore gradients
Inshore-offshore gradients are a feature of many coral reef systems,

both urban and non-urban. In urban areas, coral species richness gen-
erally tends to increase with increasing distance from city centres
(Fig. 10). However, our review suggests that the scale and strength of

inshore-offshore gradients varies considerably across cities. Of the four
main case study cities in our analysis, Jakarta had the most extreme
inshore-offshore gradient along a string of reefs arranged perpendicu-
larly to the shoreline away from the city. Mean coral cover within
20 km of the Jakarta's centre was consistently low (< 10%; Fig. 5).
Conversely, coral cover was commonly> 20% in waters immediately
adjacent to Naha, a city less than a tenth the size of Jakarta, and which
showed little evidence of inshore-offshore patterns (Fig. 9). Makassar
offers another suitable example of a clear inshore-offshore gradient, but
with reefs arranged in rows parallel to the shoreline starting close to the
city across the shelf from east to west with highest coral species di-
versity around mid-shelf reefs (Moll, 1983; Hoeksema, 2012a). Al-
though human population density is likely to be positively correlated
with (and a good proxy for) the spatial extent of urbanization's effect,
variation in inshore-offshore gradients in small and moderately sized
cities suggests other aspects of coastal development and urban land-use
are also important. For instance, in Singapore, although sites farthest
from the city centre had consistently high coral cover, there was con-
siderable variation in coral cover closer to the city's main island (Fig. 3).
One possible explanation is highly localized sedimentation and pollu-
tion due to active land reclamation projects, petrochemical facilities,
and other industrial activities. Natural drivers may also be at play.
Small-scale spatial variability in Singapore and other study city, as well
as differences across cities in the strength and spatial extent of inshore-
offshore gradients underscore the importance of city-specific, localized
drivers.

3.2.3. Reef compression
One of the key themes emerging across case-study cities was reef

compression, which is defined here as a decline in bathymetric range
with increasing turbidity and decreasing water clarity. This decline
presumably occurs over time, as has been noted in Singapore over the
latter half of the 20th Century (Chou, 1996), and with decreasing dis-
tance from urban centres. Although we were unable to find papers
clearly documenting inshore-offshore gradients in reef depth, the
shallow maximum depth of urban reefs in this review are indicative of
reef compression (Tables 2 and 3). Coral reefs in the Indo-Pacific ty-
pically extend well below 30m depth (Bridge et al., 2013; Loya et al.,
2016), while maximum reef depth within 20 km of the primary case
study cities was< 10m (Table 2). This was supported by some of the
cities listed in Table 3 as well, such as Pattaya, Kota Kinabalu, and
Makassar, which had limited depth ranges of nearshore reefs.

Reef compression may be difficult to discern from naturally occur-
ring variation in reef depth that is determined by the bathymetry of the
seafloor around shelf-based reefs near the mouths of rivers (Kleypas
et al., 1999; Hoeksema, 2012b). In some cases (away from major es-
tuaries), naturally occurring reef compression may be patchier than
that in urban areas, with greater small-scale spatial variation in reef
depth due to highly localized differences in turbidity (Larcombe et al.,
1995; Anthony and Larcombe, 2000; Cooper et al., 2007; Browne et al.,
2013; Tarya et al., 2018). Conversely, elevated sediment loads in urban
areas frequently extend over tens of kilometers (Baum et al., 2015), and
may reduce the depth of reefs more ubiquitously across this range. Reef
compression associated with small-scale shoreline development is often
relatively limited in spatial extent (Hoitink and Hoekstra, 2003), with
reduced reef depth evident only within a few kilometers of the source of
suspended sediments (Brakel, 1979; Macdonald and Perry, 2003).
Further work is needed to understand the factors that determine the
geographic extent of urban reef compression, including location-spe-
cific seasonal and temporal variation in turbidity (Wolanski and
Spagnol, 2000).

3.3. Coral colonization of novel habitats

In addition to the coral reefs that persist with urbanization, we
found multiple records of hard corals colonizing artificial structures,

Fig. 10. Hard coral species richness with increasing distance from the city
centre in Singapore (triangles), Jakarta (circles), and Hong Kong (squares). We
were unable to comparable data across an inshore-offshore gradient for Naha.
Sources: Singapore: J.S.Y. Wong et al. (2018); Jakarta: Cleary et al. (2016);
Hong Kong: K.T. Wong et al. (2018).
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which are particularly extensive in urban settings (Bulleri and
Chapman, 2010; Dafforn et al., 2015). Corals recruit to a wide variety of
urban substrate types, including concrete, steel, various types of quar-
ried boulders, scoria deposits, and, to a lesser extent, marine debris
such as car tires (Fitzhardinge and Bailey-Brock, 1989; Baine, 2001;
Lam, 2003; Creed and De Paula, 2007; Burt et al., 2009a; Gilbert et al.,
2015). Established coral colonies (≥10 cm) have been documented on
granite seawalls (Tan et al., 2012; J.S.Y. Wong et al., 2018), cement,
granite, and gabbro breakwaters (Wen et al., 2007; Burt et al., 2009b;
Viyakarn et al., 2009; Ho et al., 2017), concrete “tetrapod” jacks and
other types of interlocking shoreline construction units (Burt et al.,
2009b; Giraudel et al., 2014), and fiberglass and concrete structures in
urban areas (Loh et al., 2006; Dupont, 2008).

Direct comparisons of coral assemblages on urban artificial struc-
tures versus natural reefs are rare. Burt et al. (2009b) conducted one of
the few such studies available, comparing coral communities on
breakwaters and natural coral patches in Dubai. They found higher
coral cover but lower species richness on artificial breakwaters. The
composition of coral assemblages also differed significantly between
habitat types; breakwaters were strongly dominated by Cyphastrea mi-
crophthalma, Platygyra daedalea, and Porites lutea, while species com-
position in natural habitats was more variable (Burt et al., 2009b). It is
unclear whether these patterns extend to other cities and other artificial
structure types. Seawalls in Singapore, for instance, appear to support
an impressive diversity of corals (Tan et al., 2012), yet may include taxa
not found on surrounding reefs (J.S.Y. Wong et al., 2018). In another
study, Gilbert et al. (2015) report on the settlement of a rare mushroom
coral endemic, Cantharellus noumeae, on a deposit of scoria in the main
harbor of Nouméa, the capital of New Caledonia. This scoria is a waste
product of metal mining and in this case serves as an artificial substrate
that may help to support the occurrence of the coral population in a
sediment-rich and metal-contaminated environment, although it shows
higher abundances on natural substrate in close proximity.

Urban artificial substrates may additionally be important in the
dispersal of both native and non-native species (Bishop et al., 2017).
Floating marine debris, much of which originates in cities, is readily
colonized by corals, as was recently illustrated on discarded plastic nets
near the harbor of Bitung, Indonesia (Hoeksema and Hermanto, 2018).
Plastic, glass, and metal flotsam can transport coral recruits over vast
distances and potentially facilitate invasions of invasives such as Tu-
bastraea corals (Jokiel, 1992; Hoeksema et al., 2012, 2018; Santos and
Reimer, 2018). Biofouling corals are also transported between urban
centres by ships and other mobile or towed structures such as oil rigs,
and these structures may become part of a larger network of artificial-
substrate “stepping stones” for species invasions (Bertelsen and Ussing,
1936; Wanless et al., 2010; Yeo et al., 2010; Farrapeira et al., 2011;
Miranda et al., 2016; Brito et al., 2017).

More research is needed to characterize the coral assemblages that
form on man-made structures in tropical coastal cities. This work
should elucidate both the link between substrate material type and the
resulting composition of coral assemblages, as well as between coral
composition and demersal fish communities that then establish on ar-
tificial structures. Understanding these linkages and the mechanisms
behind them would help facilitate the development of ecological en-
gineering strategies that enhance the value and extent of ecosystem
services provided by corals to urban populations.

3.4. Are urban coral reefs distinct ecosystems?

While most of the respective abiotic changes we have discussed
(Table 1) are not exclusive to urban areas, they tend to be extreme and
occur concurrently, often with compounding effects, in urban marine
environments. Some impacts are particularly prevalent in urban areas,
such as land reclamation, noise and light pollution, boat traffic, and
various water-borne pollutants (Fig. 11). Furthermore, urban coral reefs
may be distinct from other degraded reef ecosystems if there are

interactive effects between the multiple abiotic parameters that are
characteristic of urban areas on coral community composition, species
interactions, and ecosystem dynamics. There is considerable need for
studies evaluating coral community response to multiple urban-related
stressors. For instance, do certain corals species prefer seawall habitats
and if so, will the proliferation of urban seawalls enhance the localized
larval supply of those species? Do common urban coral species respond
differently to heavy metal contaminants and if so, which life stage is
most impacted (Scott, 1990; Goh, 1991; Esslemont, 2000; Negri and
Heyward, 2001; Reichelt-Brushett and Harrison, 2005; Gilbert et al.,
2015)? And what is the net effect of these combined factors on coral
species composition on contaminated, armoured shorelines? Further-
more, potential responses to multiple abiotic processes such as these
must be considered concurrently with important biotic interactions. For
instance, differential effects of elevated sediment loads and light lim-
itation could alter the strength of competitive interactions between
hard corals and macroalgae, which are important drivers of ecosystem
dynamics (McCook et al., 2001). Similarly, greater overlap in the niche
space of deep and shallow corals caused by surface-ward shifts in deep-
water coral species such as Leptoseris and Oxypora, as has been docu-
mented in Singapore (Dikou and van Woesik, 2006), could facilitate
novel species interactions and interaction networks that influence the
trajectory of coral communities in urban areas.

Presently, these ideas remain conjectures and hypotheses that have
yet to be tested in the field. Although data collated for this review likely
constitute the most comprehensive source of information on urban
coral reefs currently available, they are far from ideal. We primarily
present percent cover data, which may be informative with respect to
broader ecosystem patterns (Hughes et al., 2010). The data we present
are also too sparse to support rigorous statistical analyses or meta-
analysis, and we provide limited information on other important reef
associated organisms, such as reef fish, as it is not readily available.
Information in this review thus can only be considered in a qualitative
manner, and cannot be used as evidence or grounds for strong and
formal conclusions about the nature of urban coral reefs more broadly.

Limited data on urban coral reefs beyond these cities currently make
it impossible to discern whether coral reefs in urban areas constitute a
unique ecosystem type, or whether they are structurally and

Fig. 11. Conceptual diagram showing the relative severity of various stressors
on urban reefs (x-axis) compared with remote reefs (y-axis). Stressors listed in
the lower righthand quadrant of the figure are likely to be of particular im-
portance for hard corals in urban settings.
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functionally comparable to other degraded reefs subject to multiple
anthropogenic stressors. A similar question has challenged terrestrial
ecologists since the establishment of urban ecology as a distinct sub-
discipline (McDonnell, 2011) and remains a source of debate (Pickett
and Cadenasso, 2017) despite extensive recent development of urban
terrestrial ecology's core principles and theoretical basis (Forman,
2016). For urban marine environments, it is a question that cannot
begin to be addressed until the necessary data are available and re-
levant hypotheses have been experimentally evaluated in the field;
dwelling on it prematurely is unproductive. We know that urban coral
reefs have for decades been subject to a convergence of anthropogenic
stressors that likely reflect the stressors which await coral reefs across a
much greater spatial scale in the decades to come as urbanization and
coastal development accelerates, particularly throughout Asia (Yeung,
2001; Neumann et al., 2015). Thus, regardless of definitions, expanded
research and improved understanding of the structure and function of
coral reef ecosystems in coastal cities may be essential to proactively
meet future nearshore management and conservation needs.

4. Planning for the future

4.1. Data and research needs

As the footprint of urbanization grows, expanded data collection on
coral reefs in urban areas is sorely needed. Most coastal cities lack
baseline information on the condition of pre-industrial coral reefs
(though some early records exist for Jakarta, Makassar, Padang, and
Singapore; see Sections 2.1, 2.2, 2.5.6, and 2.5.7). However, even in-
formation on present-day spatial and community patterns from addi-
tional cities would help to determine the extent to which patterns de-
scribed here are generalizable. Examples of other Asian cities with reefs
in their proximity can be found in Cambodia (Sihanoukville), China
(Sanya, southern Hainan), Indonesia (Ambon, Bandar Lampung, Bitung,
Manado, Sibolga), Malaysia (Miri, Penang, Semporna), Taiwan (Heng-
chun), Thailand (Phuket), the Philippines (Bolinao, Cebu City, Puerto
Galera, Puerto Princessa), and Vietnam (Da Nang, Qui Nhơn) (UNEP/
IUCN, 1988a, 1988b; Spalding et al., 2001). These cities vary in po-
pulation size and in the types and degrees of urban stressors likely affect
local coral reefs. Manado (North Sulawesi), for example, is well known
for its diving tourism but it is has also undergone extensive land re-
clamation for its waterfront development plan that has impacted coral
reefs (Lagarense, 2013). Semporna (NE Sabah) is a small city that is
economically dependent on the diving industry and surrounded by a
high concentration of reefs with high species diversity of corals and
fishes (Kassem et al., 2012; Waheed and Hoeksema, 2013). Despite this,
reefs close to the city are subject to elevated sedimentation and do-
mestic litter, discarded fish nets are common (Kassem et al., 2012;
Waheed and Hoeksema, pers. obs.), and, like elsewhere in Southeast
Asia, illegal blast fishing has frequently been observed, particularly at
offshore reefs (Kunzmann, 1997; Edinger et al., 1998; Pet-Soede and
Erdmann, 1998; Fox et al., 2005; Sawall et al., 2013). Reef surveys near
cities such as these at both urban and more remote sites would allow for
expanded cross-city comparisons that further elucidate potential in-
teractive effects of different urban stressors, as well as critical thresh-
olds in these stressors that shape coral reef response to urbanization and
global drivers over time.

Furthermore, in order to develop a mechanistic understanding of
urban coral reef communities, experimental studies in the field and
laboratory are needed to systematically evaluate the hypotheses we
have proposed and additional hypotheses that arise as observational
data become available from more cities. In this review, we focused
principally on hard corals and the effects of urban environmental
variables on species richness and percent cover, yet more complex
processes that are not captured by these data are likely at play. The
dynamics of hard coral assemblages are interlinked with those of pri-
mary producers, and can shift toward the latter in response to

disturbance (McCook, 1999; McCook et al., 2001). While a diverse as-
semblage of herbivorous fishes could hinder such a process (Burkepile
and Hay, 2008), the functional diversity and capacity of consumers to
remove macroalgae tends to decrease near developed coastlines, as has
been demonstrated in Makassar (Plass-Johnson et al., 2015a, 2016). In
Singapore, a single species of fish has been shown to be responsible for
the majority of macroalgae removal (Bauman et al., 2017). This lack of
functional redundancy in macroalgal browsing is alarming (Hoey and
Bellwood, 2009) and an important area for research moving forward.
Diversity and abundance data on corals, fish, and macroalgae from
more coastal cities could help to elucidate the major biotic interactions
that influence hard coral assemblages. Recent evidence suggests that
coral-associated microbial assemblages may also be distinct in urban
areas (Ziegler et al., 2016), and data on microbial composition across
tropical coastal cities could be informative. Ultimately, a mechanistic
understanding of how different functional groups are linked and how
they each respond to urban stressors is required to begin characterizing
the dynamics of urban coral reefs (Madin et al., 2016; Harborne et al.,
2017).

4.2. Mitigation and restoration

Coastal urbanization brings about a permanent to semi-permanent
changes in the marine environment, which we have illustrated via the
case studies in this review. Concrete, quarried rock, and man-made
materials dominate urban coasts and demarcate new coastlines formed
after shore reclamation has obliterated natural coastal habitats, as de-
monstrated in Jakarta, Kota Kinabalu, Makassar, and Singapore
(Sections 2.1, 2.2, 2.5.4, 2.5.7). Land-based sediment pollution and
elevated resource exploitation, particularly early in a city's history, lead
to dramatic losses in diversity and ecologically important species
(Edinger et al., 1998; Erftemeijer et al., 2012). Also, litter from urban
sources enters the system in large quantities (Evans et al., 1995;
Uneputty and Evans, 1997a, 1997b; Leite et al., 2014), potentially
compounding the effects of urbanization on coral reefs (de Carvalho-
Souza et al., 2018; Lamb et al., 2018). Although urban coral reefs can
never be returned to their pre-urbanization state, mitigation and re-
storation efforts may redirect their current trajectory. Environmental
regulation and enforcement is gradually improving environmental
conditions in many coastal cities (Hosono et al., 2011). Concurrently,
existing urbanized coasts can be transformed into novel habitats to
support coral growth and development through restoration and re-
habilitation.

Over the past several decades, coral restoration and rehabilitation
programs have been a crucial component of maintaining hard coral
species diversity and countering negative effects from anthropogenic
pressure on coral reefs (Rinkevich, 2005). Many techniques have been
developed and attempted (Edwards, 2010), and restoration efforts have
a relatively long history in several urban locations, such as Singapore
(Bongiorni et al., 2011; Ng et al., 2016; Chou et al., 2017). Coral re-
storation by passive or active means is possible and can be facilitated by
ecological engineering of coastal defence structures and design strate-
gies that reduce the intensity of environmental stressors. Such designs
should be informed through experimentation and careful study of ex-
isting structures that interact with corals and coral reefs. For instance,
reefs incorporated into breakwaters in Makassar were found to have
elevated densities and diversity of mushroom corals compared with
unarmoured sites, as the orientation of breakwaters reduced sediment
flux across the reef flat (Hoeksema, 2012a). While coral restoration and
ecological engineering cannot reproduce a reef community equivalent
to that of a natural reef (Rinkevich, 2014), artificial structures remain a
novel habitat in which coral communities can develop under new en-
vironmental conditions to provide some level of ecosystem services. In
such situations, some prefer to use the term ‘rehabilitation’, as it de-
notes the shifting back of a degraded ecosystem toward one of ‘greater
value’ in terms of structure and function, but not necessarily back to
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some historic or pre-disturbed state (Edwards and Gomez, 2010).
There are still gaps in understanding of the interaction between

artificial substrates and coral restoration (Spieler et al., 2001). Many of
the materials used in coral restoration are based on local availability
and cost. For instance, in Southeast Asia, PVC pipes and giant clam
shells are used (Chou et al., 2009), while in Komodo, Indonesia, rocks
are piled in heaps on the seafloor (Fox et al., 2005). For the more
permanent artificial structures, substrate materials are considered for
long-term durability and suitability as a substrate for the attachment of
corals and reef-associated organisms either through natural recruitment
or translocation. Concrete is the most commonly used material, likely
due to its low cost, material properties (e.g. durability and high char-
acteristic, compressive and tensile strength) and because it can be cast
in a variety of configurations and size. The added advantage is that
many concrete construction items can be purchased off the shelf and
used immediately as they come in different shapes and sizes that can be
readily positioned in various configurations on site. However, more
work is needed to develop materials for urban infrastructure that im-
prove recruitment and translocation success and promote intertidal
biodiversity (Browne and Chapman, 2011; Firth et al., 2014). For
corals, artificial shores could incorporate tidal pools so that restoration
or recruitment need not be confined to the subtidal zone.

Although urban habitat enhancement does not generate surrogates
for natural reefs, it is a pragmatic response to heavy urbanization where
environmental transformation is permanent and irreversible.
Integrating reef restoration into the design of coastal defences and
planning based on around local hydrodynamic conditions and societal
needs could improve effectiveness at and multifunctionality of defence
structures (Reguero et al., 2018). Ecological engineering of artificial
structures can also provide the opportunity of testing the tolerance
limits of coral species to conditions expected from climate change
(Rinkevich, 2015). The cost of ecological engineering of coastal struc-
tures and active restoration of corals will certainly be high (Firth et al.,
2014). However, such costs can be offset by the benefits of ecosystem
services. Some have also suggested that costs of transplanting corals
onto coastal structures can be saved entirely by involving trained vo-
lunteers (Toh et al., 2017), although this approach might be limited to
smaller scales.

4.3. Urban planning and ecological engineering

Although much remains to be determined regarding the ecology of
urban coral reefs, they are ultimately ecosystems of our making. Urban
coral reefs have been shaped by human modification of coastal habitats
that suit human needs and interests over short to intermediate time
scales. These modifications may not be in our interest over longer time
scales, particularly given the myriad of ecological goods and services
that healthy coral reefs provide. However, it is possible to choose how
we modify urban habitats of the future. As more data become available
and urban marine ecology advances as a field, novel approaches to
ecologically-informed urban planning choices and novel strategies for
ecological engineering could help to ensure that future urban coral reefs
provide enhanced ecosystem services and support broader conservation
goals.

Arguably, current knowledge of the negative effects of sediment
pollution on hard corals is sufficient to justify several major urban
planning changes in coastal cities, such as stronger regulatory re-
quirements for major sources of sediment pollution, improved con-
tainment of sediments during coastal construction, and environmental
planning standards for shoreline development that incorporate ecolo-
gical engineering strategies. Cities vary considerably with respect to
governance structure, planning and environmental policy challenges,
and general commitment to sustainable practices, as is evident in past
reviews and social science literature from cities we used as case studies
(Chou, 2008; Yoo et al., 2014; Baum et al., 2016b; Lai et al., 2016). In
all cases, policy and planning changes are complicated by the vast array

of stakeholders and human interests present in urban centres. They also
require cooperation and efficient communication between multiple
governmental organizations, as well as with the private sector. Re-
cently-developed approaches such as Integrated Coastal Management
(ICM) and related decision support systems (Chang et al., 2008) may
help to lessen these challenges. For instance, the ICM governance fra-
mework is currently used to manage ~12% of China's coastline and has
been shown (using a mix of qualitative and quantitative data) to be
effective in promoting ‘coral sustainability’ in China's coastal cities (Ye
et al., 2015).

Urban planning and coastal engineering informed by science has the
potential to redirect the trajectory of and help rebuild urban coral reefs.
Although it requires considerable investment on the part of city gov-
ernments and private industry, the potential of environmentally-or-
iented shoreline development and ecological engineering to deliver
improved ecosystem services to coastal populations should not be un-
derstated. As urban population density surges in coastal cities over the
coming decades, urban coral reefs have the potential to supplement the
availability of protein and enhance food security, mitigate flood risk
and reduce storm surge, and provide recreational opportunities and
access to natural environments that are increasingly recognized as
important for human well-being in cities (Fuller et al., 2007;
Panagopoulos et al., 2016). Because of the risks posed by sea level rise
and inundation, major investment in coastal infrastructure and shore-
line construction may be inevitable for many coastal cities over the next
decade. These projects will likely be the largest of their kind for the
foreseeable future if they are to effectively meet the threats detailed in
current climate projections. As such, they serve as an opportunity and a
potential crossroads for coastal habitats, with the potential to redirect
the future of urban coral reefs if innovative urban planning and effec-
tive ecological engineering strategies are incorporated. Caution should
be taken to ensure mitigation via ecological engineering is not used as
an excuse to green light further environmental destruction.

5. Conclusions

This review highlights several characteristics of urban coral reefs
based on case study cities throughout East and Southeast Asia. Reef
compression, whereby reefs occur over a relatively narrow vertical
range with a shallow maximum depth, and colonization of urban in-
frastructures were common in urban areas. Urban coral reefs tended to
be dominated by domed growth form corals with relatively low archi-
tectural complexity, which may have important implications for eco-
system dynamics of coral reefs in cities. The strength of inshore-offshore
gradients in urban areas and the total footprint of urbanization's effect
on coral reefs, though loosely proportional to city population size,
varied considerably between case studies and is likely influenced by
small-scale variation in urban-related abiotic variables and by urban
planning choices of individual cities. A shortage of research in urban
areas has limited our understanding of how far the influence of urban
centres extends, to what extent urban-related impacts interact with
non-anthropogenic stressors (Baum et al., 2015), and whether urbani-
zation affects ecosystem function. We expect that the temporal and
spatial patterns exhibited by urban coral reefs and described in this
review are shaped by a complex combination of interacting abiotic and
biotic processes. However, considerable expansion of research will be
required to elucidate these processes and understand the mechanisms
by which they influence coral reef ecosystem dynamics in urban areas.

In addition to advancing the field of urban marine ecology, which is
in its infancy, an expanded study of urban coral reefs would provide
important contributions to coral reef ecology and conservation more
broadly. Across the world, the increasing human ecological footprint
from growing coastal populations and urbanization is profoundly
changing coral reef ecosystems (Jackson et al., 2001; Hughes et al.,
2003; Mora et al., 2011). Impacts from multiple anthropogenic stressors
and the superimposed effects of climate change are leading to
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widespread losses of biodiversity on coral reefs—causing declines in
ecosystem functions and resilience, and the loss of key ecosystem ser-
vices. One of the main challenges for coral reef scientists and managers
is to identify and maintain the ecosystem functions that are crucial for
sustaining coral reefs (Hughes et al., 2017) despite rapid and ongoing
anthropogenic change. Urban coral reefs have been shaped for decades
by both regional and multiple, severe, localized anthropogenic impacts.
An improved, mechanistic understanding of coral community responses
to abiotic and biotic processes in urban areas could thus provide va-
luable insights for coral reef conservation and management. Further,
innovative ecological engineering strategies that are developed in cities
in a manner consistent with broader conservation goals could be es-
sential for future mitigation and restoration efforts as tropical and
subtropical nearshore environments globally become increasingly ur-
banized.
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