Research

An individualised self-management exercise and education program did not prevent recurrence of low back pain but may reduce care seeking: a randomised trial

Tarcisio F de Campos a, Natasha C Pocovi a, Chris G Maher b, Helen A Clare c, Tatiane M da Silva d, Mark J Hancock a

a Department of Health Professions, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; b Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; c Helen Clare Physiotherapy, Sydney, Australia; d Master and Doctoral Programs in Physical Therapy, Universidade Cidade de Sao Paulo, Sao Paulo, Brazil

KEY WORDS

Low back pain Prevention Recurrence Randomised controlled trial Physical therapy

ABSTRACT

Question: What is the effect of a McKenzie-based self-management exercise and education program on the risk of recurrence of low back pain (LBP) and on the impact of LBP? Design: Randomised controlled trial with concealed allocation, blinded assessors and intention-to-treat analysis. Participants: 262 adults recently recovered from an episode of LBP. Intervention: The experimental group received a McKenzie-based self-management exercise and education program delivered over two individual sessions of 30 to 45 minutes with a physiotherapist, approximately 2 weeks apart. The control group received a single advice session over the phone. Outcome measures: The primary outcome was time to first recurrence of an episode of activity-limiting LBP. Secondary outcomes included time to recurrence of any LBP, time to a recurrence causing care seeking and a composite measure of pain and function (‘impact of LBP’). Participants were followed-up monthly for ≥ 12 months. Results: The estimated effect of the experimental intervention on the risk of recurrence of an episode of activity-limiting LBP was HR 1.11 (95% CI 0.80 to 1.54), any LBP was HR 0.95 (95% CI 0.72 to 1.26), and LBP for which care was sought was HR 0.69 (95% CI 0.46 to 1.04). The quarterly estimates of the experimental intervention’s effect on impact of LBP and their 95% CIs were all within 4 points above or below 0 (no effect) on this scale from 8 to 50. Conclusion: This study’s best estimate is that a McKenzie-based self-management exercise and education program does not produce a worthwhile reduction in the risk of an activity-limiting episode of LBP; however, modestly reduced or moderately increased risk cannot be ruled out. It may markedly reduce the risk of an episode of LBP resulting in care seeking, but does not have any worthwhile effect on the impact of LBP over 12 months. Trial registration: ACTRN12616000926437. [de Campos TF, Pocovi NC, Maher CG, Clare HA, da Silva TM, Hancock MJ (2020) An individualised self-management exercise and education program did not prevent recurrence of low back pain but may reduce care seeking: a randomised trial. Journal of Physiotherapy 66:166–173]

© 2020 Australian Physiotherapy Association. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
All study physiotherapists were trained together in the study procedures in a single session. This session was led by an experienced McKenzie therapist instructor and the senior author, who had over 20 years of experience using the McKenzie approach. The session involved an explanation of the study design and purpose, followed by the step-by-step process of evaluating participants and delivering the intervention. This session lasted approximately 2 hours and included opportunity for clarification of any remaining questions. After this session all therapists were visited on one more occasion by the lead author to ensure that they were ready to deliver the intervention according to the study protocol. Regular contact was made with therapists during the study via newsletters (approximately three per year) and one-to-one meetings to discuss any issues in delivering the intervention and to provide reminders of study procedures.

Interventions

Experimental: McKenzie-based self-management approach

Participants allocated to the experimental group attended two individual face-to-face sessions, each with a duration of 30 to 45 minutes, delivered approximately 2 weeks apart, with a physiotherapist trained at least to level A (The Lumbar Spine module)\(^{17}\) and level B (The Cervical and Thoracic Spine module)\(^{18}\) of the McKenzie method. The study intervention sessions were performed at the physiotherapist’s practice.

In the first session, participants were assessed using a modification of the McKenzie Lumbar Spine Assessment Form.\(^{19}\) The history focused on developing a clear understanding of factors associated with previous episodes, and the individual’s daily mechanical/postural stresses. The physical examination aimed to assess habitual postures and their relationship to symptoms, spinal movement loss, and any effect of repeated spinal movements on symptoms and mobility. This assessment helped the therapists to gather information that guided prescription of an individualised prevention exercise program at home. All participants were provided with education and prescribed an individualised home exercise program focusing on those movements that balance/counteract everyday postures or positions adopted habitually, and on ameliorating any existing loss of lumbar spine movement. For instance, some participants were prescribed an exercise program involving lumbar extension to counterbalance the large amount of flexion activity/posture typical of most people’s lives in either performing manual tasks or sitting. Each participant’s home exercise program varied in frequency and duration based on the therapist’s assessment of that participant’s individual needs. Typically, exercises were prescribed to be performed multiple times per day and were of short duration.

At the follow-up session, the physiotherapists discussed with participants any barriers to participation in the program. Depending on this re-assessment the physiotherapist modified or progressed the home exercise program as required. Therapists emphasised the importance of continuing these exercises as a prevention strategy for LBP recurrence.

Control: minimal intervention

The control group received simple advice on prevention of LBP, delivered over the phone by a single physiotherapist. The key points were advice to maintain regular exercise, and education about lifting and handling objects safely; the phone call was approximately 10 to 15 minutes in duration. A copy of the *Managing Back Pain – Get Back on Track* booklet,\(^{20}\) developed by Bupa Australia Pty Ltd, was posted to participants in this group. This booklet includes general advice about back pain prevention and self-management. If they required further clarification, participants in the control group had the opportunity to contact the physiotherapist on one further occasion, approximately 2 to 4 weeks after being randomised, by email or phone.

Follow-up

Participants were followed-up monthly by a blinded researcher for \(\geq 12\) months, or until the study concluded. Participants received a...
monthly email or text message (based on preference) asking if they had experienced a recurrence of LBP with an intensity ≥ 2 on a 0-to-10 pain rating scale and lasting ≥ 24 hours within the past 4 weeks or since the last contact from the research team. Participants who replied ‘yes’ were phoned by a researcher who collected further information about this recurrence, including whether it met the criteria for the primary outcome of activity-limitation due to LBP. In addition to the recurrence data, data were collected on the impact of LBP at 3, 6, 9 and 12 months by phone or online survey.

Outcome measures

Primary outcome

The primary outcome was time to recurrence of an episode of activity-limiting LBP. This was calculated as the number of days from randomisation to the first self-reported recurrence of an episode of activity-limiting LBP (intensity ≥ 2 on a numeric pain rating scale from 0 to 10, lasting ≥ 24 hours, and subjectively interfering with day-to-day activities ‘somewhat’, ‘quite a bit’ or ‘very much’ using an adaptation of item P9 of the PROMIS item bank to measure pain interference). Time to recurrence of an episode of LBP leading to care seeking was also assessed. This was defined as the number of days from randomisation to the first reported LBP recurrence that resulted in a consultation with a healthcare provider.

The personal impact of LBP was measured using the impact score, as recommended by the NIH Task Force, which incorporates nine items of the 29-item PROMIS short form. These items cover the domains of pain intensity, pain interference with normal activities and functional status. The total score ranges from 8 (least impact) to 50 (greatest impact). This measure was collected at 3, 6, 9 and 12 months, with participants being asked to respond about the impact of LBP over the previous 3 months regardless of whether they had experienced a recurrence.

Process measures

Some additional process measures were collected to help interpret trial results. These process measures included measures of physical activity, treatment compliance and treatment credibility.

Physical activity was measured using a modified version of the International Physical Activity Questionnaire (IPAQ) at baseline and at 3 and 12 months.

Treatment compliance was monitored in two ways. Attendance at the two physiotherapy visits was recorded. Participants were asked to rate their compliance with the home program using the Brief Adherence Rating Scale, which ranges from 0 (not compliant at all) to 10 (very compliant), at 3, 6, 9 and 12 months.
Treatment credibility was measured by the Credibility Expectancy Questionnaire at 3 months.33

Adverse events and use of co-interventions
Adverse events and the use of any co-intervention were monitored during the study period. Adverse events were defined as any new medical condition or exacerbation of an existing condition as reported by the participants during the study. Serious adverse events were defined as any event resulting in death or hospital admission. Adverse events were assessed by directly asking participants at 3 and 12 months: ‘Have you had a new medical condition or an exacerbation of an existing condition since the beginning of the study?’ Information about any intervention for treatment or prevention of LBP (apart from the study program) was recorded in a free-text field at 3, 6, 9 and 12 months.

Data analysis
Study sample size was calculated using commercial softwareb, based upon the method of Lakatos.27 At the beginning of the study, a 30% recurrence rate in the control group at 1 year was anticipated and it was initially calculated that a sample size of 198 participants per group would give 80% power to detect a 40% relative reduction in recurrence rates between the treatment group and control group. The sample size calculations were based on a 24-month accrual period and 12-month follow-up period. The study conservatively allowed for a monthly 1% loss to follow-up, and monthly 1% treatment non-compliance in both groups. However, 20 months after recruitment began (sample size 231), the sample size was re-assessed because, based on a cohort study of a similar population, it was suspected that the control group recurrence rate was greater than the 30% used in the original calculations. Using a 40% recurrence rate at 1 year for the study control group (observed rate was 44% at 1 year in the control group at that time), the updated calculation indicated that a sample size of 131 participants per group would provide 80% power to detect a 40% relative reduction in recurrence rates with a two-sided alpha level of 0.05. This change to the study protocol was updated on the clinical trial registry. All data were double-entered and analysed using the intention-to-treat principle.33 For the primary and secondary outcomes, mean effects were estimated with 95% confidence intervals (CIs). Baseline comparability of the groups was analysed using key prognostic variables to assess for any chance imbalance that may have occurred; they were added as a confounder variable in the model if needed. The survival curves were inspected and the time-dependent covariate method was used to check if the proportional hazards assumption was violated.

Cox-regression was used to estimate the effects of experimental intervention on hazard ratios, which were reported with 95% CIs. For each group, the 25th percentile days to recurrence of activity-limiting LBP (ie, the number of days when 25% of participants had experienced a recurrence) was calculated. This analysis was used instead of the median days to recurrence, which was not calculable because < 50% of people had this event. Analogous survival analyses were conducted for the time to recurrence of non-specific LBP and time to an episode of care seeking for LBP. The effect of the experimental intervention on the secondary outcome, impact of LBP, was estimated with repeated measures linear models using data from 3, 6, 9 and 12 months. This was reported as a mean effect size over the 1-year period, with 95% CI.

Completeness of follow-up was calculated using the completeness index,33 which quantifies the total observed person-time of follow-up as a percentage of the potential time of follow-up in the study. All analyses and interpretation of the results were performed by a blinded researcher. Analyses were performed using commercial softwarec.

Results
Flow of participants through the study
Recruitment occurred from July 2016 to June 2018 with follow-up ending on the 30th of June, 2019. A total of 670 potential participants were screened for eligibility and 262 entered the study (Figure 1). Participants were followed for ≥ 12 months and ≤ 30 months. One participant, who was randomised to the experimental intervention group, was excluded after randomisation as the treating physiotherapist identified that the participant had ongoing chronic LBP and should not have been included. Two blinded researchers reviewed the case and recommended that the participant be excluded from the analyses. Of the 261 participants, 132 were assigned to the experimental intervention group and 129 to the control group. The reason for this mismatch in the total number of participants allocated in each group was due to the use of randomly permuted block sizes of 4, 6 and 8. In the experimental group, 127 participants received the allocated intervention, while six participants did not receive the allocated intervention (one post-randomisation exclusion and five could not attend the sessions). In the control group, 128 participants received the advice about prevention strategies, while one participant could not be contacted to receive the minimal intervention. In total, 246 participants (94%) either reached the study primary outcome or were censored at the end of the study follow-up period. The remaining 15 participants (five in the experimental group and ten in the control group) either were lost to follow-up or withdrew and were censored early. The completeness index was 94% for the study primary outcome.

Characteristics of study participants and therapists
The demographic and baseline clinical characteristics of participants included in this trial are presented in Tables 1 and 2. The mean age was 42 years (SD 13) and approximately half (49%) were female. The median number of previous episodes of LBP across both groups was 6 (IQR 3 to 15). Participants in the two groups were similar at baseline. Nine physiotherapists credentialed in the McKenzie method delivered the McKenzie-based intervention.

Compliance with the study protocol
Self-reported intervention compliance was similar across both groups over the 1-year follow-up period (Table 3). Attendance at the
two physiotherapy sessions in the intervention group was: 117 (89%) attended two sessions, 10 (7%) attended the initial session only, and five (4%) did not attend any sessions. Further details of study process measures are presented in Table 3.

Effects of the intervention

Primary outcome

For the primary outcome of number of days from randomisation to first reported recurrence of activity-limiting LBP, the preventive effect of the experimental intervention was estimated as HR 1.11 (95% CI 0.80 to 1.54). The 25th percentile time from randomisation to activity-limiting recurrence of LBP (number of days when 25% of participants had experienced a recurrence) was 101 days (95% CI 74 to 127) in the experimental group and 127 (95% CI 44 to 210) in the control group. Figure 2 presents the Kaplan-Meier survival curves for days to first recurrence of an episode of activity-limiting LBP.

Secondary outcomes

The preventive effect of the experimental intervention on the secondary outcome of any recurrence of LBP was estimated as HR 1.11 (95% CI 0.80 to 1.54). The 25th percentile time to a recurrence of any episode of LBP was 58 days (95% CI 41 to 75) in the experimental group and 59 (95% CI 33 to 85) in the control group. Figure 3 presents the Kaplan-Meier survival curves for days to first recurrence of LBP leading to care seeking.

The preventive effect of the experimental intervention on the secondary outcome of a recurrence of an episode of LBP leading to care seeking was estimated as HR 0.69 (95% CI 0.46 to 1.04), indicating a point estimate of a 31% reduction in care seeking in the experimental group compared with the control group. The 25th percentile time to a recurrence of LBP leading to care seeking was 344 days (95% CI 197 to 491) in the experimental group and 238 (95% CI 134 to 342) in the control group. Figure 4 presents the Kaplan-Meier survival curves for days to first recurrence of LBP leading to care seeking.

The experimental intervention did not have a worthwhile effect on the secondary outcome of impact of LBP over the 12-month period. The mean effect sizes and their confidence intervals at 3, 6, 9 and 12 months were all within 4 points above or below 0 (no effect) on the scale from 8 to 10 (Table 4).

Individual participant data are presented in Tables 5 and 6 on the eAddenda.

Discussion

The purpose of this study was to estimate the effect of two sessions of McKenzie-based self-management exercise and an education program on people who had recently recovered from an episode of LBP. The primary outcome of this study was the risk of recurrence of activity-limiting LBP. The estimate of the effect on this outcome was HR 1.11 (95% CI 0.80 to 1.54). The best estimate was that a McKenzie-based self-management exercise and education program does not produce worthwhile reductions in the risk of an activity-limiting episode of LBP; however, modestly reduced or moderately increased risk could not be ruled out. This confidence interval indicates that the true effect of the experimental intervention on this outcome in the general population might be anywhere between increasing the hazard ratio by 54% or decreasing it by 20%. Further research could be undertaken to try to decrease this uncertainty about the effect on activity-limiting LBP.

Similarly, the best estimate suggested that the experimental intervention does not produce worthwhile reductions in risk for the secondary outcome of any LBP recurrence (HR 0.95, 95% CI 0.72 to 1.26). The confidence interval for the secondary outcome of recurrence of any LBP extended from 0.72 to 1.26, indicating that the experimental intervention might increase the hazard ratio by 28% or decrease it by 28%. Again, this finding does not exclude the possibility of important effects in either direction, so further research could be undertaken to try to decrease this uncertainty.
Recurrence is defined as a new episode of LBP of intensity >2/10, lasting at least 24 hours. The best estimate was that the experimental intervention produces worthwhile reductions in risk for this outcome. The CI excluded the possibility that the experimental intervention increases the hazard ratio to any important extent (ie, ≤4%) and included the possibility that the effect is very worthwhile (ie, decreased the HR by 54%). This promising result suggests that this effect is worthy of further investigation. However, the experimental intervention clearly had a negligible effect on the impact of LBP, with effect sizes and their confidence intervals all lying within 4 points above or below 0 (no effect) on the scale from 8 to 50.

Current evidence from a systematic review of randomised trials on prevention of LBP suggests that exercise in combination with education has a protective effect for up to 1 year (RR 0.55, 95% CI 0.41 to 0.74). Most trials in this review included group-based strength and aerobic exercises that were quite different from our experimental intervention. However, one of the included trials by Larsen et al. investigated the effect of passive prone back extensions performed twice daily and education based on the McKenzie method in male military conscripts. This study reported a relative risk reduction of a new LBP episode of around 60% (RR 0.36, 95% CI 0.18 to 0.73). In contrast, the best estimates from our trial suggest that a McKenzie-based self-management and education program did not produce worthwhile reductions in the risk of a recurrence and did not generate precise enough estimates to confidently

Table 3
Process measures.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Exp (n = 132)</th>
<th>Con (n = 129)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity (min/wk), median (IQR)^d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking</td>
<td>182 (358)</td>
<td>180 (305)</td>
</tr>
<tr>
<td>3 months</td>
<td>192 (90 to 300)</td>
<td>180 (82 to 307)</td>
</tr>
<tr>
<td>12 months</td>
<td>180 (90 to 300)</td>
<td>180 (90 to 300)</td>
</tr>
<tr>
<td>Moderate/vigorous</td>
<td>90 (0 to 240)</td>
<td>120 (27 to 240)</td>
</tr>
<tr>
<td>3 months</td>
<td>90 (40 to 200)</td>
<td>90 (17 to 245)</td>
</tr>
<tr>
<td>12 months</td>
<td>90 (20 to 205)</td>
<td>90 (30 to 180)</td>
</tr>
<tr>
<td>Program compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiotherapy first session only, n (%)</td>
<td>10 (8)</td>
<td>NA</td>
</tr>
<tr>
<td>Physiotherapy both sessions, n (%)</td>
<td>117 (89)</td>
<td>NA</td>
</tr>
<tr>
<td>Home exercise program between sessions (0 to 10), mean (SD)^c</td>
<td>7.3 (2.1)</td>
<td>NA</td>
</tr>
<tr>
<td>Compliance over 12 months (0 to 10), mean (SD)^c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>6.8 (2.3)</td>
<td>5.9 (2.5)</td>
</tr>
<tr>
<td>6 months</td>
<td>5.5 (2.6)</td>
<td>5.7 (2.8)</td>
</tr>
<tr>
<td>9 months</td>
<td>5.2 (2.7)</td>
<td>5.3 (2.8)</td>
</tr>
<tr>
<td>12 months</td>
<td>5.1 (2.8)</td>
<td>5.2 (2.8)</td>
</tr>
<tr>
<td>Credibility/expectancy (4 to 36), mean (SD)^c</td>
<td>29.5 (6.0)</td>
<td>24.5 (9.0)</td>
</tr>
<tr>
<td>Adverse events, n^a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>serious adverse events</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>adverse events</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>Co-interventions, n^e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>overall</td>
<td>153</td>
<td>210</td>
</tr>
<tr>
<td>physiotherapy</td>
<td>45</td>
<td>57</td>
</tr>
<tr>
<td>chiropractic</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>massage</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>Pilates</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>acupuncture</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>yoga</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>others</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Pregnancy, n^f</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Con = control group, Exp = experimental group, NA = not applicable.

^a Self-rated total time spent doing the activity (at least 10 minutes at a time) over the previous 7 days.

^b Brief Adherence Rating Scale, scored from 0 (not compliant at all) to 10 (very compliant).

^c Credibility/expectancy, scored from 4 (low credibility/expectancy) to 36 (high credibility/expectancy).

^d Number of adverse events reported in the study over two time-points (3 and 12 months).

^e Number of additional co-interventions reported in the study over four time-points (3, 6, 9 and 12 months).

On the other hand, the estimates for the secondary outcome of recurrence of LBP causing care seeking gave a more helpful indication of what the true effect might be (HR 0.69, 95% CI 0.46 to 1.04). The

Figure 2. Kaplan-Meier survival curves for days to first recurrence of an episode of activity-limiting LBP. Recurrence is defined as a new episode of LBP of intensity >2/10, lasting at least 24 hours. LBP = low back pain.

Figure 3. Kaplan-Meier survival curves for days to first recurrence of any episode of LBP. Recurrence is defined as a new episode of LBP of intensity >2/10, lasting at least 24 hours. LBP = low back pain.

Figure 4. Kaplan-Meier survival curves for days to first recurrence of LBP leading to care seeking. Recurrence is defined as a new episode of LBP of intensity >2/10, lasting at least 24 hours. LBP = low back pain.
Table 4

<table>
<thead>
<tr>
<th>Time-point</th>
<th>Exp</th>
<th>Mean (SD)</th>
<th>n</th>
<th>Con</th>
<th>Mean (SD)</th>
<th>MD (95% CI)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>132</td>
<td>21.7 (8.1)</td>
<td>129</td>
<td>21.7 (8.9)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>129</td>
<td>13.0 (4.7)</td>
<td>125</td>
<td>13.2 (5.8)</td>
<td>–0.1 (–1.8 to 1.5)</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>129</td>
<td>12.6 (5.3)</td>
<td>120</td>
<td>13.8 (6.1)</td>
<td>–1.1 (–3.0 to 0.7)</td>
<td></td>
</tr>
<tr>
<td>9 months</td>
<td>126</td>
<td>13.0 (5.0)</td>
<td>122</td>
<td>14.5 (7.3)</td>
<td>–1.3 (–3.3 to 0.6)</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>125</td>
<td>13.6 (6.8)</td>
<td>117</td>
<td>13.4 (6.2)</td>
<td>0.1 (–1.8 to 2.1)</td>
<td></td>
</tr>
</tbody>
</table>

Personal Impact of Back Pain was based on nine items of the 29-item PROMIS short form and scored from 8 (least impact) to 50 (greatest impact). Con = control group, Exp = experimental group, NA = not applicable.

a Mean between-group difference based on modelled estimates. A negative value of the MD estimate represents an effect in favour of the experimental group.

recommend whether or not it should be used in preventing recurrences of LBP. Important differences between our randomised trial and the trial by Larsen et al10 could explain the different findings. We recruited a broad community population, whereas Larsen et al recruited male military conscripts. We recruited participants who had recovered from a previous episode of LBP within the past 6 months, whereas Larsen et al included a mixed population with and without LBP. We followed participants for between 12 and 30 months, whereas Larsen et al followed participants for 10 months.

Some strengths of our study were a pre-specified published protocol,1112 regular follow-ups to avoid recall bias and use of three definitions of a recurrence. We recruited an inception cohort of people recovered from an episode of LBP within the last 6 months and our results are most relevant to this population. We followed participants for between 12 months and 30 months, and achieved very high follow-up rates (completeness index of 94%).

A limitation of our trial was that it was not possible to blind clinicians and participants to group allocation due to the nature of the intervention. A single therapist delivered the minimal intervention to the control group, which could impact the generalisability of findings. The confidence intervals for the primary outcome are relatively wide; however, they clearly exclude the 40% reduction in risk that we powered the study to investigate.

It is unclear why the best estimates from our trial suggest that the intervention did not produce worthwhile reductions in risk of a recurrence, when exercise and education interventions have been effective in most previous trials. It is possible this is due to the imprecision of our estimates, but also suggests that future research should investigate whether it is the exercise type, dosage or both that is required for a protective effect. Our promising findings regarding reduction in care seeking require further testing in larger randomised trials that are fully powered for this less common but important event. Future mechanistic research to better understand how interventions might reduce care seeking would help with development of interventions that optimally target reduced care seeking.

What should clinicians make of this study’s findings? The imprecise estimates on the first few outcomes should not be interpreted as evidence that the experimental intervention is ineffective for those outcomes. Further evidence may clarify that the intervention’s effect is beneficial, negligible or harmful. Clinicians should keep an open mind about those outcomes until more precise estimates are available. For the time being, those estimates narrow our idea of what the true average effect of the intervention on those outcomes might be, but not enough to indicate whether the treatment should be used. The estimate of the effect on recurrence of LBP that leads to care seeking is more promising and does exclude the possibility of any important harm, but it still includes the possibility of no effect, so the study cannot be used to recommend the experimental intervention to prevent care seeking. Where the study was able to provide clear evidence was on the impact of LBP, with very narrow confidence intervals centred close to 0 (ie, no effect). Clinicians can conclude that the experimental approach has a negligible effect on the impact of LBP.

Given the strong trend evident on the ‘care seeking’ outcome and the clear indication of negligible effect on the ‘impact of LBP’, it is interesting to speculate whether a treatment could prevent care seeking even though it does not affect the impact of LBP. Although both interventions in this study offered strategies for self-management, the more intensive experimental intervention may have reinforced this message more effectively. Perhaps the experimental intervention does not delay the recurrence of LBP, but it does effectively teach patients to self-manage well enough so that they do not need to seek care from a healthcare practitioner when LBP recurs.

In conclusion, this study provided believable but imprecise estimates about whether a McKenzie-based self-management exercise and education program affects recurrence of LBP. The best estimate was that a McKenzie-based self-management exercise and education program does not produce worthwhile reductions in the risk of an activity-limiting episode of LBP but may produce worthwhile reductions in recurrence of an episode of LBP leading to care seeking. We also found clear evidence that any effect on the impact of LBP over 1 year is negligible. Further research should investigate the promising trend that this experimental intervention might delay care seeking when LBP recurs.

What was already known on this topic: Current evidence from randomised controlled trials suggests that exercise combined with education reduces the risk of a new episode of LBP; however, the evidence from these trials is mostly based on relatively costly, inflexible and time-consuming exercise programs.

What this study adds: This study provided robust but imprecise estimates about whether a McKenzie-based self-management exercise and education program affects recurrence of LBP, but it provided clear evidence that any effect on the impact of LBP over 1 year is negligible. Further research should investigate the promising trend that this intervention might prevent people from seeking healthcare when LBP recurs.

Footnotes: a Qualtrics, b Qualtrics, Provo, USA. b PASS Software, NCSS, Kaysville, USA. c SPSS version 25, IBM, Armonk, USA. eAddenda: Tables 5 and 6 can be found online at https://doi.org/10.1016/j.jphys.2020.06.006.

Ethics approval: Ethical approval for the study protocol was obtained from Macquarie University Human Research Ethics Committee on April 2016 (ref. number: 5201600187). All participants provided verbal informed consent before data collection began.

Competing interests: Mr Tarcisio F de Campos received an International Mechanical Diagnosis and Therapy Research Foundation (IMDTRF) continuation grant. Helen A Clare is an International Director of Education and Instructor of the McKenzie Institute. Prof Mark J Hancock was keynote speaker at the McKenzie International conference in San Francisco, USA, and travel and accommodation costs were paid.

Source(s) of support: This work was supported by a grant from the International Mechanical Diagnosis and Therapy Research Foundation – USA. The funders of this trial had no role in the study design, data

Downloaded for Anonymous User (n/a) at Macquarie University from ClinicalKey.com.au by Elsevier on August 09, 2020.

For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.
Acknowledgements: Mr Tarcisio F de Campos received a PhD scholarship from Macquarie University (Macquarie University Research Excellence Scholarship (MQRES) – Allocation No. 2016221). Prof Chris G Maher is supported by a National Health and Medical Research Council Principal Research Fellowship. Miss Tatiane M da Silva receives a fellowship from FAPESP (São Paulo Research Foundation) with grant number: 2018/20035-7. The authors thank all the participants recruited into the study, and all physiotherapist practitioners involved in this study. The authors also thank LB Espinoza and I Lin for their assistance in the study data collection. Furthermore, we thank the International Mechanical Diagnosis and Therapy Research Foundation (IMDTRF) for funding the trial. Parts of this manuscript are based on the published trial protocol, accessible via https://doi.org/10.1093/ptj/fpx406.

Provenance: Not invited. Peer reviewed.

Correspondence: Mr Tarcisio F de Campos, Department of Health Professions, Macquarie University, NSW 2109, Australia. Email: tarcisio.de-campos@hdr.mq.edu.au

References