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Categorical processing of fast temporal sequences
in the guinea pig auditory brainstem

Alice Burghard® "2, Mathias Benjamin Voigt!, Andrej Kral® ! & Peter Hubka® '

Discrimination of temporal sequences is crucial for auditory object recognition, phoneme
categorization and speech understanding. The present study shows that auditory brainstem
responses (ABR) to pairs of noise bursts separated by a short gap can be classified into two
distinct groups based on the ratio of gap duration to initial noise burst duration in guinea pigs.
If this ratio was smaller than 0.5, the ABR to the trailing noise burst was strongly suppressed.
On the other hand, if the initial noise burst duration was short compared to the gap duration
(a ratio greater than 0.5), a release from suppression and/or enhancement of the trailing ABR
was observed. Consequently, initial noise bursts of shorter duration caused a faster transition
between response classes than initial noise bursts of longer duration. We propose that the
described findings represent a neural correlate of subcortical categorical preprocessing of

temporal sequences in the auditory system.
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drive cognition and behavior!:2, It enables the differ-

entiation of distinct classes in sensory perception when
incoming sensory information changes gradually along a con-
tinuum. Categorization corresponds to a nonlinear transforma-
tion of a linearly changing variable into a neuronal representation
enabling rapid transition between categories!. Categorical
grouping of sensory information represents an efficient adaptive
tool for coping with a constantly changing and complex world. It
allows generalization of sensory features, construction of internal
sensory objects, and, thus, enhanced detection and encoding of
familiar as well as novel sensory objects3-C.

Categorical perception was first introduced in studies on
speech perception and auditory processing in humans”-8. Speci-
fically, it defines phoneme categories with sharp transitions
between the perception of consonants-vowel pairs (e.g,. pa-ba, ta-
da, and ka-ga) when the timing between the stop consonant and
vowel, called voice-onset time, continuously changes’. This
demonstrates that temporal coding plays an important role in the
categorical coding of these phonemes.

Vocal communication in animals has reliably been shown to
be based on categorical perception!?, including voice-onset
time dependent classification (chinchillall; monkey!?). It is
generally assumed that the neuronal processing underlying
categorical perception is accomplished in the cerebral
cortex!>14, Indeed, activity in several cortical areas was iden-
tified to mirror categorization in the perception of sounds!>-17.
Previous studies have, however, provided evidence that the
encoding of temporal patterns of acoustical signals is already
performed at the level of the auditory brainstem in humans!$.
Temporal response precision in the auditory brainstem has also
been shown to be related to speech perception!®20 and reading
skills2!. This link between temporal response precision and
speech perception indicates that the neuronal coding of tem-
poral structure is involved in the auditory categorical percep-
tion and can start as early as in the auditory brainstem. To
verify this hypothesis, an analysis of neuronal responses from
the auditory brainstem to a systematically changing temporal
structure is necessary.

The present study approaches this problem by analyzing
auditory brainstem responses (ABR) to changes in the temporal
structure of auditory stimuli, which contain no relevant spectral
information. We show that the temporal pattern of an auditory
stimulus is nonlinearly transformed into auditory brainstem
activation. This transformation could provide an important
subcortical contribution to the final neuronal response categor-
ization in the cerebral cortex.

C ategorical perception is one of the basic principles that

Results

We studied the neuronal representation underlying early phases
of auditory processing in the brainstem of guinea pigs based on
the temporal pattern of the acoustic stimulation. For this purpose,
the auditory brainstem responses (ABRs) to initial noise bursts
(NB1, duration of 5-100ms) and trailing noise bursts (NB2,
duration 50 ms) separated by short gaps (2-10 ms) were recorded
(Fig. la). Random noise stimuli were used to avoid any infor-
mative spectral cues. This allowed us to investigate the impact of
the temporal pattern of the stimulus (NB1-GAP-NB2 sequence)
on ABR characteristics, per se.

We did not find any significant difference in the onset ABRs
evoked by the initial NB1 (ABR;) for all conditions tested. Onset
ABRs evoked by the trailing NB2 (ABR;), however, varied
depending on the NBI1 duration and gap duration (see the raw
data and group time-domain representation in Supplementary
Figs. 1 and 2, respectively).

Time-frequency representation of ABRs. The ABRs to stimulus
onsets were analyzed using their time-frequency representations
(TFR). The TFR of the ABR signal was used for its explicit access
to the information about the power of any given frequency range.
Consequently, the TFR provides information about the time
course of the single frequencies. Furthermore, power changes in
several frequency ranges usually coexist and can be better iden-
tified using this analysis. The TFR analysis is therefore an
excellent tool to study such co-activations.

The ABR signals were dominated by frequencies between
650-900 Hz (corresponding to wave period durations of
1.5-1.1 ms; Fig. 1b). The lower and the higher frequency bands
(LFB: 400-650 Hz, and HFB: 900-1150 Hz, respectively) repre-
sent slower waves (wave period of 2.5-1.5 ms), on which the main
waves are superimposed, and faster waves (wave period of
1.1-0.9 ms), which mirror a sharpening of the waves of the main
signal, respectively. The LFB and HFB thus represent important
information about a main ABR signal modulation making them
good candidates for further analysis.

Identification of two groups based on stimulus sequence. In
order to identify specific effects of the initial response on the
trailing response in a fast sequence, the differences between TFRs
of ABR, and ABR; were computed (Fig. 1b). Positive power of
differential TFRs (hot colors in the plots) indicated a larger power
of corresponding frequencies in responses to NB1. Negative dif-
ferential TFR power (cold colors) indicated larger powers in
responses to NB2.

The differential TFRs seem to fall into two qualitatively
different groups (Fig. 1c):

1. Balanced/enhanced group—This group was characterized
by ABR,=ABR;; it comprised sequences of brief initial
noise bursts (durations of 5 and 10 ms) followed by a gap of
3-10 ms and 10 ms, respectively;

2. Suppressed group—In this group, ABR, < ABRy; it comprised
all other stimulation sequences.

The balanced/enhanced group exhibited no change in the
dominant frequency range (650-900 Hz), but a slight increase of
power in the lower and the higher frequency bands in ABR,
compared to ABR; (blue areas in the TFR color plots in Fig. 1c).
The suppressed group was characterized by a suppression of
ABR, power in the dominant frequency range compared to ABR;
(yellow central areas in the TFR color plots in Fig. 1¢; compare to
Supplementary Fig. 1 for time-domain representations).

Since transitions between the identified groups depended on
both studied parameters (NB1 duration and gap duration) we
searched for a single combined parameter that could characterize
the observed transitions independently from gap duration
(GAPd) or NB1 duration (NB1d) alone. The ratio between GAPd
and NB1d (Rg.n=GAPd/NB1d, see Table 1) was such a
parameter along which the ABR classes were grouped together
with a steep nonlinear transition between them for Rg_ ~ 0.5-0.6
(Fig. 2a). Differential TFRs were similar within groups, but
differed greatly between groups (Fig. 2b). The observation of
small within group differences, large between group differences
and a nonlinear transition between the two groups along the
single parameter (Rg.y) indicates a classification of ABRs
depending on the combination of the NB1 and gap durations.

There were two conditions with the same gap/NB1 duration
ratio (gap duration—5 ms and NB1 duration—5 ms; gap duration
—10 ms; and NB1 duration—10 ms). Even having different gap
and NB1 durations, they yielded very similar responses. LFB as
well as HFB contributions in differential TFRs for these
conditions were similar and if pooled together the variability of
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Fig. 1 Combination of leading noise burst and gap duration determines time-frequency representations of the onset ABR to the trailing noise burst.

a Schematic representation of stimulus sequence together with the matched recorded ABR signals. Leading noise burst (NB1) and gap duration were
systematically varied (NB1 durations: 5, 10, 30, and 100 ms; gap durations: 2, 3, 5, and 10 ms). The duration of the trailing noise burst (NB2) was fixed
at 50 ms. The shaded boxes represent the first 8 ms post-stimulus time used for TFR analysis. The frame represents a time window of 6 ms duration
(latencies of 1-7 ms) used for quantitative time-domain analysis (Supplementary Fig. 1). For details, see Methods. b Example of time-frequency
representations (TFR) of the ABRs (NB1 duration = 5 ms; gap duration =10 ms) and the differential TFR between the leading and trailing onset ABRs (for
details, see Methods). € Grand means of differential TFRs for all recorded combinations of NB1 and gap duration. Yellow and blue colors represent higher
power in ABR; and ABR;, respectively. Green color represents no change in power between ABRs. Black contour lines indicate statistically significant

difference between TFR to leading and trailing noise bursts

Table 1 Overview of the grouping parameter of the ratio of
gap duration to NB1 duration

NB1 durations

5 10 30 100
Gap durations 2 0.4 0.2 0.07 0.02
3 0.6 0.3 0.1 0.03
5 1 0.5 017 0.05
10 2 1 0.33 0.1

these pooled groups did not differ from that of all remaining
groups. This provides per se a strong indication that the gap/NB1
duration ratio is the proper grouping variable and not the
duration of gap or NBI alone.

Clustering analyses confirm the existence of two groups. To
confirm the existence of the observed categories in the ABRs, a
support vector machine supervised classifier with 10-fold cross
validation was used. As input parameters for the classifier, the
powers of all three frequency bands in the time window expres-
sing the main power change in TFRs (post-stimulus time interval
of 3-5 ms) were used. The trained model could classify the groups
with an accuracy of 96.0% (94.4% after cross-validation) and a
precision of 93.3% (86.7% after cross-validation) for the balanced/
enhanced group (Fig. 2¢).

In order to identify which structures contribute the most to the
described classification of the ABRs, the changes in the HFB and
the LFB of the differential TFRs were further analyzed in 0.5 ms
bins. K-means clustering, as an unsupervised clustering algo-
rithm, was applied to the dataset in order to partition the whole
population into two separate clusters with data points having the
smallest distance to a common mean of each cluster. A silhouette
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Fig. 2 Classification of the ABR signals based on the ratio between gap and leading noise burst duration. a Temporal sequence of leading noise burst (NB1)
and gap can be characterized by a ratio of gap duration and NB1 duration (see Table 1). Differential TFRs can be organized along this variable (depicted in
upper right corner of each TFR) indicating an abrupt transition between the observed groups at the ratio of gap duration and NB1 duration between 0.5 and
0.6. The vertical arrangement of the single TFRs is to avoid overlap in conditions with similar gap/NB1 duration ratios and contains no additional
information. b Relative power of TFR differences between ABR; and ABR; in low and high frequency bands (LFB—400-650 Hz and HFB—900-1150 Hz,
respectively) for latencies of 3-5 ms showed a significant separation between the two identified groups along the ratio of gap duration and NB1 duration. In
the left panels, the data are shown for all gap duration and NB1 duration ratios (n = 8); grey symbols represent the Suppressed group, red symbols the
Balanced/Enhanced group. The data with the ratio of gap duration and NB1 duration of 1 were identical for 2 conditions (gap duration—5 ms and NB1
duration—5 ms; gap duration—10 ms; and NB1 duration—10 ms) and were pooled together (n =16 and 14, respectively). In the right panels, boxes indicate
twenty-fifth and seventy-fifth quartile around the median, the whiskers represent the data range (p =1.1x10~13 for LF band, p = 4.5 x 10~ for LF band;
suppressed group n = 96, balanced/enhanced n = 30). ¢ Left panel: Grouping of data low and high frequency change in TFR from the time window (latency
of 3-5ms) according to the Support Vector Machine (SVM) analysis; gray symbols represent the Suppressed group (SG), red symbols the Balanced/
Enhanced group (B/EG); single-colored dots represent correctly classified data points, double-colored dots represent data points, which were misclassified.
Middle panel: Receiver operating characteristic curve shows high and robust classification reliability based on the SVM model after 10-fold cross-validation
(AUC Area under curve); Right panel: Result of the Silhouette analysis confirms optimal data classification into two groups

analysis of the data confirmed two to be the optimal number of Discussion

clusters (Fig. 2¢). The sensitivity, specificity, and their combina- The results presented here provide evidence that a sequence of
tion—informedness (a parameter indicating a probability of two sounds separated by a brief gap evokes a combination of
informed prediction of the clustering, see Methods) were onset ABRs that can be grouped along the ratio of the gap
computed for each time bin and used to evaluate an accuracy duration to the initial sound duration. The transition between the
of the unsupervised K-means clustering for the identification of two groups is steep and nonlinear indicating a categorization of
the balanced/enhanced and the suppressed group (Fig. 3). This these subcortical responses. Consequently, we propose that the
classification revealed that a good separation of features for the initial categorization of rapid temporal sequences occurs already
two groups (specificity > 80%; informedness > 0.5) was found for at the level of the auditory brainstem. Cortical networks subse-
latencies between 1.5-4.5 ms. This time window corresponds to  quently refine and contextualize the stimulus classification
ABR waves II-IV, which have their activation sources in the existing at subcortical levels, leaving more time and neuronal
cochlear nucleus and superior olivary complex, respectively?2.  resources for complex integration of uni- and multimodal object
This corresponds also to the observed changes of these peaks in  representations.

the ABR waveforms when analyzing the ABRs in the time- We have shown that a release from suppression and/or
domain (see Supplementary Fig. 1). enhancement of the trailing response depends on the duration of
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Fig. 3 Classification (k-means clustering) of the ABR signals to the temporal sequence of the leading NB1 and trailing NB2 based on frequency power
change. a Automatic classification of ABRs in the relation between mean low (LF) and high frequency (HF) power changes in differential TFRs for 0.5 ms
bins using a k-means clustering algorithm. The rectangles in the example of a differential TFR show areas for computation of mean ‘LF change’ and 'HF
change' variables. Scatter plots are shown for bins between 1 and 6 ms post-stimulus time (white rectangles). Upper panels of scatter plots show ‘HF
change’ to ‘LF change' relation for the group of GAPd/NBI1d ratios larger than 0.5 in color (color code, see inlay) and the remainder in dark gray. Lower
scatter plots show the results of the k-means clustering procedure, which automatically separates all populations into two groups. b Evaluation of the
results of k-means clustering. Sensitivity (true positive rate) and specificity (true negative rate) are shown for bins between 1 and 6 ms post-stimulus time.
¢ The time dependency of informedness (=sensitivity + specificity-1). It evaluates a level of confidence of automated clustering results. Informedness can
be interpreted as a probability of informed prediction of the clustering (see Methods for details)

the leading noise burst (Fig. 1). Leading noise bursts of shorter
duration caused an earlier transition between the response classes
than leading sounds of longer duration (for NB1 =5ms, the
transition occurred at gap durations between 2-3 ms; for NB1 =
10 ms, the transition occurred at gap durations between 5-10 ms).
This observation is qualitatively similar to differences in the
perceptual boundary of the transition between voiced and
unvoiced phonemes of different consonants (‘p-b’ pair
~20-25ms, ‘t-d’ pair ~30-35ms, and ‘k-g’ pair ~40-45 ms!!).
Based on our results, one would predict that consonants with
longer duration require longer voice-onset times for perceptual
change from the unvoiced to the voiced phoneme. This, indeed,
corresponds to the temporal features of these phonemes?3.

The data presented here could also explain the single and
double onset responses reported in the auditory cortex for voiced
and unvoiced phonemes, respectively?4. Single onset responses in
the cortex could result from the temporal fusion of two strong
onset responses in a fast sequence (as in the balanced/enhanced
group). An amplification of the ABR, would also decrease the
latency of this response and, thus, facilitate a fusion of both onset
responses in the cortex (Fig. 4, compare with Fig. 3 in ref. 1°). A
smaller second response in the double onset responses in the
primary auditory cortex (see e.g. Fig. 3 in ref. 1°) indicates pre-
servation (or even amplification) of the second (trailing) response
if it is temporally well separated but suppressed at the level of the
brainstem (as in our suppressed group). We hypothesize that
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Proposed temporal grouping mechanism
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Fig. 4 Proposed mechanism for categorical processing based on temporal
contrast enhancement in the auditory system. Proposed mechanism for
classification enhancement of temporal sequences in the auditory cortex. A
sequence of two strong onset responses in the brainstem could temporally
fuse and merge into a single (perhaps double peaked) response in the
cortex'>. On the other hand, a smaller trailing response in the brainstem can
increase a temporal gap between leading and trailing response onset along
auditory pathways resulting in two clearly discernable separate responses
at the level of the auditory cortex!®. Similar mechanism could be applicable
also in other modalities with different time constants

mechanisms of temporal fusion and temporal separation of the
activation sequence along subcortical pathways could facilitate
neuronal temporal contrast at the level of the cortex, and thus
enhance perceptual categorization as well?> (Fig. 4).

The finding that categorical processing starts already early in
the auditory pathways indicates that an important part of it
occurs already at a pre-attentive level. This preparing phase could
play a crucial role for the final categorical processing in the
cortex, and therefore can importantly influence categorical per-
ception. Many studies have shown that speech perception, which
is based on categorical processing, deteriorates with peripheral
hearing loss and/or compromised temporal processing at the
periphery of the auditory system?6-28. These observations
strongly indicate an existence of a pre-attentive phase of cate-
gorical processing. We identify here the neurophysiological cor-
relate of such pre-attentive categorical processing in the auditory
brainstem that is based on temporal information.

Previous studies suggested a link between enhanced subcortical
auditory processing and improved speech perception!®29-31,
However, this view remains controversial, e.g., the categorical
perception of vowels in humans is not accompanied by catego-
rical classification at the level of the brainstem32. This discrepancy
could be caused by different strategies that the auditory system
uses for the neural coding of different speech elements. Vowels
are mostly coded via spike counts, whereas consonants seem to be
coded by spike timing33. Our study was focused on the effect of
the temporal sequence of auditory stimuli in brainstem auditory
processing, as it can be found in consonant vowel combinations.
We have shown that the timing and duration of the stimuli in a
short sequence play a crucial role in the classification of the
temporal stimulus parameters (Fig. 2). This observation is con-
sistent with the notion of importance of spike timing in speech
encoding where consonants and short gaps play a crucial role3.

Identification and classification of ABRs into two groups based
on the temporal sequence of the stimulation is an important part
of the study. Therefore, we critically analyzed data using several
clustering approaches (See Methods and Results for details) in
order to confirm that the identified groups were not arbitrarily
chosen. The classification into two clusters was optimal as proved
by Silhouette analysis, which is a tool designed to test for optimal
number of groups that represent the data (Fig. 2c, right panel).
An automated clustering using supervised support vector
machine classifier with 10-fold cross-validation confirmed very
reliable classification into the two groups and their separation was
close to perfect (Fig. 2c). The results of the unsupervised k-means

clustering have shown a substantial degree of overlap between a
label free k-means clustering and our classification along the gap/
NB1 duration ratio axis. An unbalanced representation of the
data between the groups (12 vs 4 conditions) could potentially
bias our results. However, the high similarity within the groups,
the large, highly significant difference between groups (p =1.1 x
10-13 for LF band, p=4.5x10-14 for LF band) and the high
reliability of several clustering approaches strongly indicate that
such a bias would not substantially influence our outcomes. Based
on these results we are confident that the classification was not
arbitrary, but captures the key characteristics of our data.

Other approaches to study temporal processing are paired click
paradigms (e.g., refs. 34-3%) or forward masking paradigms3”. Our
approach is different from a paired click paradigm where click
stimuli follow in a much faster sequence (0.15-10 ms) when
compared to our study (7-110 ms). Such a fast stimulus sequence
leads to the direct interaction of the onset ABRs in the majority of
the studied conditions. In our study, the minimal time interval
between the onset responses was 7 ms (Supplementary Figure 2)
ensuring that a relevant portion of the onset response of the first
stimulus was already terminated. Consequently, the direct inter-
action of the onset responses plays a limited role in our experi-
ments. Furthermore, in contrast to clicks, the duration of the
noise bursts allows not only for an onset response, but also for an
ongoing and offset response. The ongoing and offset responses to
NB1 might influence the following onset response to NB2.
Indeed, a dependence of the recovery of the trailing response on
the duration of the first stimulation was observed in the forward
masking paradigm?’. Additionally, the importance of the offset
responses was recently shown for temporal processing in the
mouse auditory thalamus33. We hypothesize that depletion and
availability of Ca?* and potentially other ions may be involved in
the observed mechanism3?.

Here, we have described noninvasively recorded brainstem
activation patterns that can form the basis of complex categorical
processing of temporal features of an acoustic stimulus. In con-
trast to the higher-level neuronal processing, the pre-attentive
processing does not critically depend on anesthesia). Anesthetics
influence preferentially top-down and not bottom-up activa-
tions*! that were the main focus in this study. Anesthesia also has
been shown to influence peripheral neuronal processing sub-
stantially but only at high concentrations#2. In the present study,
the anesthesia was kept at the lowest surgical level and monitored
by continuous ECG and end-tidal CO, levels. Furthermore,
temporal processing seems not to be critically influenced by
anesthesia up to the level of the thalamus38. Consequently, we do
not expect that anesthesia was a critical factor in the
present study.

While we did not ourselves performed the behavioral experi-
ments, it has been repeatedly shown in various species that
animals, including rodents, are behaviorally able to categorize
voice-onset-time based stimuli similarly to humans!9-12. Further
studies are, however, needed to reveal the exact underlying neu-
ronal mechanism and the behavioral relevance of the observed
findings. For a complete understanding of the observed phe-
nomena, information about single neuron activities in all
important auditory nuclei and the transformation of auditory
activation patterns along the auditory pathway up to the level of
auditory cortex is necessary. Moreover, detailed knowledge of the
neurophysiological mechanisms underlying complex processing
of temporal structures in the auditory system can lead to designs
of behavioral training protocols that could improve categorization
of acoustic features based on their temporal structure. Improved
categorization would enhance recognition and perception of
sound signals (e.g., phonemes), which are based on these features.
Results of such studies would be of high translational value and
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could improve rehabilitation strategies in patients with hearing
impairments.

In conclusion, the present study provides evidence that audi-
tory brainstem processing initiates mechanism of categorical
separation based on the temporal structure of the sound. We have
identified two parameters that crucially affected this categoriza-
tion: (1) the duration of the initial sound, and (2) the duration of
the following gap before the second sound onset. Similar sound
sequences form a basis for categorization of phonemes based on
the voice-onset time and therefore are connected directly to
speech perception. These results, together with behavioral evi-
dence for categorical perception of vocalizations in animals!0,
further strengthens the old evolutionary origin of basic networks
for phonetic analysis, and suggests that some phonetic categorical
boundaries are not arbitrarily drawn but depend on phylogen-
etically old circuits. From the evolutionary perspective, it is easier
and more efficient to reuse and refine preexisting neuronal cir-
cuits, which are already optimized for sound communication in
animals, for the development of speech and language, than to
develop a new network for this task.

Methods

Animals. In this study, eight male Dunkin Hartley guinea pigs (Charles River,
Saint-Germain-sur-I'Arbresle, France; age of 6.5 + 1.2 weeks) with a weight
between 350-665 g were used. All experiments were performed in accordance to
the German “law on protecting animals used for experimental purposes” as well as
the European Council directive 2010/63/EU. All experiments had been approved
by the local ethics committee (Animal Welfare Service at Lower Saxony State Office
for Consumer Protection and Food Safety, approval number: 14/1548) and by the
institutional Animal Care and Research Advisory Committee.

Anesthesia. All experiments were performed under general anesthesia. To prevent
disturbances of the gastro-intestinal tract the animals received 0.5 g BeneBac” Gel
(Albrecht GmbH, Aulendorf, Germany) per os (p.o.) ca. 30 min prior to induction
of anesthesia. To reduce possible anxiety, animals were administered 0.3 mL dia-
zepam (Ratiopharm, Germany) p.o. at the same time.

The anesthesia was induced via an intramuscular (i.m.) injection of a
combination of 50 mg/kg ketamine hydrochloride (Ketamin 10%, WDT, Garbsen,
Germany) and 10 mg/kg xylazine hydrochloride (Xylazin 2% Bernburg®, Medistar
Arzeneimittelvertrieb GmbH, Ascheberg, Germany). The anesthesia was
maintained with repeated injections of 1/4th to 1/3 of a mixture of 50 mg/kg
ketamine hydrochloride and 5 mg/kg xylazine hydrochloride. To prevent broncho-
secretion, 0.1 mg/kg atropine sulfate (B. Braun Melsungen AG, Melsungen,
Germany) was added to the first injection. Fluid substitution was administered via
subcutaneous (s.c.) injections of Ringer solution (~2 mL/2 h). To avoid
hypothermia, the animals were placed on a heating pad coupled with an intrarectal
thermo probe. Topical application of dexpanthenol cream (Bepanthen®, Bayer Vital
GmbH, Leverkusen, Germany) was used to avoid dry eyes. The animals were
ventilated with room air via an intratracheal tube. For analgesia the animals
received an s.c. injection of 2.5 mg carprofen (Pfizer GmbH, Berlin, Germany).
Continuous monitoring of heart rate, body temperature, respiratory pressure, and
end-tidal CO2 concentrations as well as toe-pinch-reflex were used to assess
anesthesia depth.

Stimulation and ABR recordings. Stimulation and recording of the auditory
brainstem response (ABR) signals were performed using the AudiologyLab system
(Otoconsult, Frankfurt a. M., Germany) in a sound-proof recording booth. The
stimuli were presented by a calibrated loudspeaker (DT48, BeyerDynamic, Heil-
bronn, Germany) via a plastic cone placed in the outer ear canal. The ABR signals
were recorded using subcutaneous Ag/AgCl electrodes, which were placed as fol-
lows: recording electrode—caudo-ventral of the respective pinna, reference—ver-
tex, ground—neck. The signals were amplified (100,000x), band-pass filtered
(200-5000 Hz), and recorded at a sampling rate of 100 kHz.

First, the hearing threshold of both ears was determined using clicks (duration:
50 ps, recording interval: 33 ms, 120-40 dB Attenuation, 5 dB steps). Further
recordings were performed on the side with lower hearing threshold or the side last
stimulated, if hearing threshold was equal on both sides (right: n =2; left: n =6).

The sequence of noise burst stimuli (Fig. 1a) contained two noise bursts
(random noise) with 1 ms rise/fall time separated by a silent gap of varying
durations (2, 3, 5, and 10 ms). The leading noise burst (NB1) duration was set to be
5, 10, 30, or 100 ms; the trailing noise burst (NB2) duration was fixed at 50 ms. All
noise burst sequences were presented 600 times (300 times with inverse polarity) at
30 dB above click ABR threshold. The stimulation was presented at time intervals
>150 ms (151-160 ms).

ABR analysis. The recorded data were analyzed using custom codes in Matlab
(The MathWorks, Inc., Natick, USA). For all analyses, the ABR signals were off-
line filtered (300-3000 Hz) using zero-shift filtering (‘filtfilt’ function in Matlab).
Only the ABR responses to the onset of the respective noise bursts were analyzed in
a 8 ms post-stimulus time window.

Time-domain parameters. The quantitative parameters were collected from a
time window from 1-7 ms post-stimulus onset comprising all dominant onset ABR
waves. RMS values of the respective responses was computed and their ratio was
calculated in order to determine the overall power relation between the onset ABR
response to NB1 and to NB2. RMS ratios higher than 1 indicate stronger brainstem
activation evoked by NB2 than by NB1. A similar ratio of the most dominant peak
III (peak to trough) was also calculated.

tation.

Time-freq y repr Time-frequency representations (TFRs) of the
onset ABR responses were computed to assess the synchronization of the activation
of the brainstem structures. Higher frequencies indicate faster and highly syn-
chronized activation of auditory brainstem structures, lower frequencies represent
slow potential shifts indicating conditioning of the neuronal circuits by small
depolarization or hyperpolarization at the time of the second activation. The
Wigner-Ville distribution (2048-point precision) was used for computing the TFR
for its excellent resolution both in time and frequency domains without a need of
trade-off between time and frequency resolution. Cross-terms in Wigner-Ville
representations were suppressed using the Choi-Williams filtering procedure*3.
Differential time-frequency representations (acquired by simple subtraction of
individual TFRs) were computed to visualize the differences between the initial and
trailing onset ABR response.

In order to quantitatively evaluate relative contributions of the different
frequency bands, the TFR was divided into three frequency bands:

1. Middle frequency band (650-900 Hz). The ABR waves have a typical duration
between 1.1ms and 1.5ms corresponding approximately to frequencies
between 900 Hz and 650 Hz, respectively*4. This frequency range therefore
builds up the main ABR waveform;

2. Low frequency band (400-650 Hz, corresponding to wave periods of
~2.5-1.5ms, respectively). The power of signals in this frequency band
represents slower processes of neuronal activation, mainly postsynaptic
potentials#®. It can reflect modulatory processes that affects synchronization
of activation sequence;

3. High frequency band (900-1150 Hz, corresponding to a wave periods of
~1.1-0.8 ms, respectively). An increase in power in this frequency band
indicates higher temporal synchronization of action potentials in the
brainstem*°.

As the dominant power of the ABR signal lied within the range of 650-900 Hz
with the frequency band width of 250 Hz, the low and high frequency bands were
set to keep the same frequency width below and above the middle frequency range.

Temporal dynamics of the ABR signal power in the different frequency bands
were evaluated by binning the differential TFRs into 0.5 ms long time segments
(Fig. 3a). Then, mean differential TFR power was computed for each time-
frequency bin yielding a time-frequency change representation of the individual
segments.

Clustering analysis. Support vector machine (SVM) clustering: Time-frequency
changes in high and low frequency bands in post-stimulus time interval of 3-5 ms
were used as input data for a supervised binary (two group) SVM classifier. The
data were labeled for the Suppressed group (Rg.n <0.5) and Balanced/enhanced
group (Rg.n > 0.5), respectively. SVM classifier model was then trained and 10-fold
cross-validated in Matlab.

K-means clustering: Time-frequency change segments in high and low
frequency bands were used as a dataset for k-means clustering (Fig. 3). The optimal
number of clusters for k-means clustering was specified by evaluating the clustering
solution for 2-10 clusters based on Silhouette values (a measure of data similarity
to its own cluster compared to the other clusters). This analysis identified two
clusters as an optimal clustering solution for k-means clustering (Fig. 2c, right
panel). In the present study, a cosine distance measure as it is implemented in the
Matlab ‘kmean’ function was used.

K-means clustering for two clusters was performed to validate the classification
based on the Rg.ny = NB1d/GAPd (Suppressed group: Rg.n < 0.5; Balanced/
enhanced group: Rg.n > 0.5). A larger cluster was considered to represent the
Suppressed group as more stimulus configurations have Rg < 0.5. Similarly, a
smaller group was considered to represent Balanced/enhanced group. A confusion
matrix was computed yielding true-positives (TP; points from putative Balanced/
enhanced group clustered in the smaller cluster), false-negatives (FN; points from
putative Balanced/enhanced group clustered in the lager cluster), true-negatives
(TN; points from putative suppressed group clustered in the lager cluster), and
false-positives (FP; points from putative suppressed group clustered in the smaller
cluster). Based on the confusion matrix, the sensitivity (SE = TP/(TP + FN), called
also true-positive rate), the specificity (SP = TP/(TN + FP)) and its combination
informedness (I = SE + SP-1) was calculated. Informedness can be interpreted as a
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probability of informed prediction of the clustering result*®, i.e., the quality of the
clustering. The informedness =1 implies that the k-means clustering resulted in
the correct separation of the observed groups.

Statistics and reproducibility. For statistical comparison of TFRs, the paired
sample permutation test based on t-statistics (two-sided) corrected for multiple
comparisons was used®’ (p <0.05). The ABR waveforms were compared using
Wilcoxon rank sum test (two-sided) with false discovery rate correction®® (p <
0.01). Two-way ANOVA was performed to test statistical differences in time-
domain parameters with post-hoc multiple comparison correction (p <0.05).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. All averaged individual recorded ABR traces for all
recorded conditions are shown in Supplementary Fig. 2. The source data underlying
Fig. 2 are shown in Supplementary Data 1.

Code availability
The custom computer codes used in this study are available upon reasonable request to
the corresponding author.
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