The Effects of the Menstrual Cycle and Oral Contraceptive Cycle on Body Composition

A thesis submitted for the degree of
Master of Philosophy in Exercise & Sport Science
November 2017

Heidi Hillebrandt
B. Sc. Rehabilitation Psychology

School of Environmental and Life Sciences
Faculty of Science and Information Technology
University of Newcastle
AUSTRALIA
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.

** Unless an Embargo has been approved for a determined period.

24-Nov-2017
Date Signed
Acknowledgements

There are a number of people who I must thank for their leadership and support throughout this entire master research process.

To my parents, I would like to acknowledge your constant support to allow me to follow my dreams and accomplish any challenge life throws at me. You have always been there for me and I will forever love you and appreciate your support, strength, and love.

To Daniel who I love and who inspires me to be better every day, thank you for your unending support and advice. I am very lucky to have you in my life, you put a smile on my face and warmth in my heart. You have been there every step of the way. Thank you for your love, encouragement, and patience throughout this process.

I would like to express my very great appreciation to my main supervisor Dr. Xanne Janse de Jonge for her valuable and constructive suggestions during the planning, development, and collection of this research work. Her willingness to give her time so generously has been very much appreciated. If it weren’t for her hard work, care and belief in me, in helping me to be awarded a scholarship, this degree wouldn’t have been possible.

I would like to offer thanks to my secondary supervisor Dr. Sandra Hunter for your guidance.

My grateful thanks are also extended to Dr. Dean Sculley and Dr. Zoe Yates for their help in lending time, knowledge and materials towards completing the hormone analysis for this research work.

To all the volunteers who made themselves available for testing, I am very grateful for your participation and commitment throughout the research studies. Without your assistance, this research would not have been able to be completed.

To my colleagues past and present from the ESS department it has been a pleasure to work with you all over this time, and many thanks for all your invaluable advice and help along the way.

To Meghan Healy and LouAnn Counihan, if it weren’t for your generous letters of recommendation (and acceptance of my procrastination) I wouldn’t have ended up on a study abroad placement in Australia, and wouldn’t have been afforded this wonderful opportunity.

To all my previous school teachers thank you for your educational support. Special thanks extended to my first-year chemistry TA, Mandy Long for believing in me and helping me through tough times in order to still achieve my undergraduate degree at Madison. You taught me what being a great teacher means.

To all my other family and friends both in the States and Australia, thank you for your support.
Abstract

Throughout their reproductive years, women are exposed to continuously changing female steroid hormone profiles. Large fluctuations of both oestrogen and progesterone are thought to cause many physiological effects on the body. Potential effects on fluid regulation may, in turn, result in changes in body composition over the course of a menstrual cycle or oral contraceptive (OC) cycle. The current research literature is however equivocal concerning the effects of female-specific hormone fluctuations on measures of body composition. Where effects have been observed, limited attention has been given to accurate verification of the menstrual cycle phase. Therefore, the overall aim of this thesis was to investigate the potential changes in body composition over the course of the menstrual cycle (study one) and the oral contraceptive cycle (study two), while including cycle phase verification via hormone analysis.

Study one investigated the potential effects of the menstrual cycle on body composition in women of reproductive age (n=10; age: 29.7 ± 7.8 years; height: 164.7 ± 5.0 cm; weight: 66.8 ± 11.0 kg; BMI: 24.6 ± 3.4). Study two investigated the potential effects of the oral contraceptive cycle on body composition in women of reproductive age taking an oral contraceptive (n=9; age: 22.3 ± 3.1 years; height: 166.2 ± 6.8 cm; weight: 63.5 ± 8.1 kg; BMI: 23.0 ± 2.7). Various methods of body composition measurement were used, including weight, girths, skinfolds, bioelectrical impedance analysis (BIA), ultrasound, dual energy x-ray absorptiometry (DXA), and peripheral quantitative computed tomography (pQCT), resulting in measures of percent body fat (skinfolds, DXA, BIA), fat mass (DXA, BIA), lean mass (BIA), and fat and muscle thickness (ultrasound, pQCT). Furthermore, urine specific gravity (USG) was measured to provide an indication of hydration status.
Repeated measures ANOVA was used to compare the changes in body composition variables over the three phases of the menstrual cycle or oral contraceptive cycle. The three phases of the menstrual cycle were defined as early follicular (day 1-4), late follicular (day 10-13) and luteal phase (day 19-23). While the oral contraceptive cycle was split into sugar pill (day 3-6 sugar pill), early OC (day 5-8 hormonal pill) and late OC (day 14-18 hormonal pill). Overall, no significant changes over the menstrual cycle were found for any of the measures of body composition, while for the oral contraceptive cycle only thigh girth showed a change. The main limitation, however, was the small sample sizes in these studies, while the strict menstrual cycle verification used resulted in the exclusion of participants. The high percentage (30%) of anovulation and/or luteal phase deficiency found in study one indicates the need for higher participant numbers in future menstrual cycle research due to the likely need for exclusion of participants.

In summary, the current studies purposefully addressed the methodological problems associated with previous research on this topic. Although no significant changes in body composition over the menstrual cycle or oral contraceptive cycle were found, it is very likely that these findings were limited by the relatively small participant numbers. Research on body composition over the menstrual cycle and oral contraceptive cycle is not only of interest to researchers, but also to the general population of women, and especially those involved in sports where body composition has the potential to affect performance and/or team selection. Future research with strict methodological control and high participant numbers is therefore warranted to further investigate the potential effects of the menstrual cycle and oral contraceptive cycle on measures of body composition.
Table of Contents

Statement of Originality ... 2
Acknowledgements ... 3
Abstract .. 4
Table of Contents .. 6
List of Publications Arising from this Thesis .. 9
List of Figures .. 10
List of Tables ... 11
List of Abbreviations .. 12

Chapter 1: Introduction .. 14
1.1 Introduction .. 15
1.2 Statement of the Problem .. 16
1.3 Significance ... 18
1.4 Research Aims .. 18
1.5 Limitations and delimitations .. 19

Chapter 2: Background Information .. 20
2.1 Menstrual Cycle Physiology ... 21
2.1.1 Regulatory System of cycle phases ... 21
2.1.2 Menstrual Irregularities ... 24
2.1.3 Menstrual Cycle Phase Verification ... 26
2.2 Oral Contraceptives .. 30
2.3 Fluid Regulation ... 33
2.4 Measures of Body Composition ... 36
2.4 Conclusion ... 47

Chapter 3: Systematic review of the potential effects of the menstrual cycle and oral contraceptive cycle on body composition in females .. 49
3.1 Introduction ... 50
3.2 Methods .. 52
3.2.1 Data sources & searches ... 52
3.2.2 Study selection .. 52
3.2.3 Data extraction & quality assessment .. 53
3.3 Results ... 53
3.3.1 Study selection .. 53
3.3.2 Study characteristics ... 54
3.3.3 Methodological quality .. 55
3.3.4 Findings ... 66
3.4 Discussion .. 68
3.5 Conclusion ... 74

Chapter 4: Study One: The effect of endogenous hormone fluctuations during the menstrual cycle on body composition ... 76
4.1 Introduction ... 77
4.2 Aims & Hypotheses ... 79
4.3 Methodology ... 79
4.3.1 Participants .. 79
4.3.2 Nutrition & Exercise Control .. 80
Appendix 15: Study One Participant Girths Results .. 145
Appendix 16: Study One Participant Skinfold Results .. 146
Appendix 17: Study One Participant BIA Results ... 149
Appendix 18: Study One Participant Ultrasound Results .. 150
Appendix 19: Study One Participant DXA Results .. 151
Appendix 20: Study One Participant pQCT Results .. 152
Appendix E: Study Two Characteristics & Results .. 153
Appendix 21: Study Two Participant Characteristics ... 153
Appendix 22: Study Two Participant Testing Order .. 154
Appendix 23: Study Two Oestrogen Concentration ... 155
Appendix 24: Study Two Progesterone Concentration .. 156
Appendix 25: Study Two Participant USG Results .. 157
Appendix 26: Study Two Participant Weight Results ... 158
Appendix 27: Study Two Participant BMI and Weight Status ... 159
Appendix 28: Study Two Participant Girths Results .. 160
Appendix 29: Study Two Participant Skinfolds Results ... 161
Appendix 30: Study Two Participant BIA Results ... 164
Appendix 31: Study Two Participant Ultrasound Results .. 165
Appendix 32: Study Two Participant DXA Results .. 166
Appendix 33: Study Two Participant pQCT Results .. 167
Appendix F: Publications ... 168
Appendix 34: Article in the Book of Abstracts and Presentation at Sport’s Medicine Australia (SMA) 2015 Conference ... 168
List of Publications Arising from this Thesis

Conference Proceedings:

List of Figures

Figure 2.1: Hormone fluctuations across the menstrual cycle (Martini et al., 2001)23

Figure 3.1: Flow chart showing screening process and search results54

Figure 4.1: Mean Hormone Concentrations Across the Menstrual Cycle85

Figure 5.1: Mean Hormone Concentration Across the Oral Contraceptive Cycle100
List of Tables

Table 3.1: Summary of Included Studies...56
Table 4.1: Summary of the Exact Order Variables Were Measured in per Testing Session...83
Table 4.2: Equipment Needed to Complete Testing Session Protocols, and Outcome
Measures Produced by Body Composition Assessment...83
Table 4.3: Body Composition Outcomes During the Menstrual Cycle.........................86
Table 4.4 Pearson Correlations of Field vs Laboratory Measures During the Menstrual Cycle
..88
Table 5.1: Type and composition of oral contraceptive pill taken by participants............97
Table 5.2: Body Composition Outcomes During the Oral Contraceptive Cycle...............101
Table 5.3: Pearson Correlations of Field vs Laboratory Measures During the Oral
Contraceptive Cycle..103
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ADP</td>
<td>Air Displacement Plethysmography</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AT1</td>
<td>Angiotensin 1</td>
</tr>
<tr>
<td>AT2</td>
<td>Angiotensin 2</td>
</tr>
<tr>
<td>BBT</td>
<td>Basal Body Temperature</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelectrical Impedance Analysis</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual-Energy X-ray Absorptiometry</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FFM</td>
<td>Fat-Free Mass</td>
</tr>
<tr>
<td>FM</td>
<td>Fat Mass</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle Stimulating Hormone</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin Releasing Hormone</td>
</tr>
<tr>
<td>HPO</td>
<td>Hypothalamic-Pituitary-Ovarian Axis</td>
</tr>
<tr>
<td>ICC</td>
<td>intraclass correlation coefficient</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>ℓ</td>
<td>litre</td>
</tr>
<tr>
<td>L4</td>
<td>4th Lumbar vertebrae</td>
</tr>
</tbody>
</table>
L5 5th Lumbar vertebrae
LH Luteinizing Hormone
LPD Luteal Phase Deficiency
m Metre
MAN Manual clinical refractometer
MC Menstrual Cycle
ml Millilitre
mm millimetre
MRI Magnetic Resonance Imaging
NCAA National Collegiate Athletic Association
nm nano metre
OC Oral Contraceptive
pQCT peripheral Quantitative Computed Tomography
RAAS Renin Angiotensin Aldosterone System
SD Standard Deviation
TBW Total Body Water
USG Urine Specific Gravity
UWW Underwater Weighing
β Beta
µl Microlitre