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Abstract: Polarisation eigenmode theory is well established for laser cavities in which the
principal axes for gain and polarisation elements are parallel. Here we generalise the theory
to include the case for gain axes at arbitrary angle to the birefringence, which is the case for
Raman lasers based on cubic-class gain crystals that contain stress-induced birefringence. The
theory describes regimes dominated by gain, linear or circular birefringence, and the intermediate
regime in which elliptically polarised output modes are obtained. Previously reported behaviour
for diamond Raman lasers are found to be in accord with the findings. Design criteria are obtained
to enable prediction of polarisation behaviour as functions of birefringence and resonator design.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The mode properties of lasers are determined by the resonator boundary conditions and the
effects of intracavity elements on amplitude and phase. In the case of polarisation modes, the
analysis is simplified when the axes of birefringent elements are parallel to those of the gain.
One notable exception is laser media suffering radial thermally-induced stress birefringence
to produce complex output beam patterns including the characteristic Maltese cross pattern of
ref [1]. Though this specific case has been solved [1, 2], there is another class of problems
involving linearly anisotropic gain and birefringence but with non-collinear axes. Such a scenario
has been recently identified in diamond Raman lasers (DRLs) in which the crystal contains
in-grown stress birefringence [3].
Calculation of polarisation modes of such anisotropic resonators are often found using

mode theory (see e.g., [4]) combined with a Jones matrix formalism (see e.g., [5]). Eigenvector
solutions of the resonator round-trip matrix represent the polarisation states and the corresponding
eigenvalues enable determination of the polarisation mode that experiences the highest net gain
and thus establishes first in the cavity. Although some laser gain crystals, such as Nd:YVO4,
show anisotropy in their emission cross-section, the eigensolution analysis is determined by the
passive elements [6], since they are either the dominating effect or the gain axes are parallel
with the axes of the dominant polarising element. In systems with strong polarisation mode
competition, such as intra-cavity frequency doubled solid-state lasers, an effective emission
cross section, and thus threshold, can be defined for each eigensolution [7]. Effects of gain
anisotropy in presence of birefringence have been studied numerically for microchip lasers [8]
and VCSELs [9]. Coupled laser-level rate equations for two orthogonal cavity eigensolutions
explain the polarisation dynamics of these lasers. In the case of spin injected VCSELs, their gain
exhibits small circular anisotropy which has been recently shown to reveal complex dynamics in
the polarisation modes [10–12].

A specific example of systemswith strong gain anisotropy is crystalline Raman lasers [13]. Most
of the practical Raman crystals are naturally birefringent [14], however, even isotropic Raman
crystals such as diamond, silicon, and Ba(NO3)2, which are cubic [14], contain stress induced
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birefringence or the resonator consists of other anisotropic elements or components with stress
induced birefringence of an arbitrary direction. An analytical model for the polarisation behaviour
has not yet been presented for lasers possessing linearly anisotropic gain and non-collinear
birefringence axes.

In this paper we extend the Jones formalism to include linearly anisotropic gain and derive the
Jones matrix for the specific case of diamond. The theory is applied to standing wave and ring
resonators containing stress induced linear and circular birefringence in the crystal. We show
that the fully analytical calculations explain the observed difference in polarisation behaviour of
pulsed and continuous wave (cw) DRLs.

2. General theory

Jones matrices describe how individual optical elements in the laser resonator act upon the
polarisation state of the circulating beam. Jones matrices for standard optical elements can be
found e.g., in [15]. The Jones matrix for a birefringent material with fast axis parallel to a local x
axis is defined as

B = ©­«
e−i ξ2 0

0 ei ξ2

ª®¬ , (1)

where ξ = 2πL(ny − nx)/λ is the phase difference induced by a birefringent plate of length L
with refractive indices nx and ny in x and y axis.

For a gain medium for which two orthogonal polarisation components of generated laser field
amplify independently, we define the Jones matrix of gain as

G = ©­«
eG0γ1 0

0 eG0γ2

ª®¬ , (2)

where G0 is the conventional single pass gain with separated normalised amplification weightings
γ1,2.
In a laser resonator above threshold, G0 is fixed by a lasing threshold condition. Assuming

γ1 ≥ γ2, that condition is

Re2G0γ1 = 1 (3)

G0 =
1
γ1

ln
(
R−

1
2

)
, (4)

where the effective cavity reflectivity R accounts for transmission of all mirrors as well as other
parasitic losses. Using Eq. (4) the gain matrix in a symmetrical form is

G = ©­«
e Γ2 0

0 e− Γ2
ª®¬ , (5)

where Γ = 1/γ1 ln(R− 1
2 )·(γ1−γ2). In this form the average amplification factor e1/γ1 ln(R−

1
2 )·(γ1+γ2)/2

was removed.
A gain material containing only a pure linear birefringence can be modelled as a separate

gain and an arbitrarily oriented waveplate as the birefringence and gain matrices commute. The
roundtrip matrix of a resonator containing gain and linear birefringence is

M = GR (τ) BR (−τ) R (τ) BR (−τ)G, (6)
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where R (τ) is a counter-clockwise rotation matrix which accounts for the angle τ between the fast
axis of the birefringence and the gain basis. Eigensolutions of the matrix M are two orthogonal
eigenvectors ν1 and ν2 and eigenvalue κ1, κ2. The polarisation of the established laser mode is
given by the largest eigenvector.

3. The anisotropic Raman gain in crystals of F2g symmetry

We now derive the amplification factors γ1,2 for crystals of cubic symmetry (specifically diamond),
which has a triply degenerated Raman mode and features strongly anisotropic gain [13]. The
gain maximizes for coincident pump and Stokes polarisations aligned to a 〈111〉 direction [16].
Note that the 〈111〉 directions are not orthogonal (70.6◦) as shown in Fig. 1. In arbitrary bases
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Fig. 1. Crystallographic directions in diamond with respect to usual propagation direction
used in Raman lasers and an example of birefringence fast f and slow s axis orientation.

the power flow from pump to Stokes fields describe four coupled equations [17]

dSk
dz
=
g

2

∑
i jl

χ
(3)
i jkl

SiPjP∗l

dPl
dz
= − g

2η

∑
i jk

χ
(3)
i jkl

SiPjS∗k, (7)

where S and P are amplitudes of the Stokes and pump field, respectively, g is the small signal
Raman gain coefficient, η = λp/λs is the quantum defect of the inelastic Raman scattering, where
λs and λp are the Stokes and pump wavelengths, χ(3)

i jkl
are normalised components of the third

order Raman susceptibility tensor accounting only for coupling differences between the fields
and indexes i, j, k, l represent all permutations of local x and y axes.
We limit the discussion to cases near lasing threshold, in which the effects caused by uneven

depletion of P1 and P2 and resulting pump polarisation rotation can be neglected. If the pump
basis orientation is aligned with the input linear polarisation direction, the P2 is zero and Eqs (7)
simplify to

dS1
dz
=
g

2

(
χ
(3)
11′11′S1P1′P∗1′ + χ

(3)
21′11′S2P1′P∗1′

)
dS2
dz
=
g

2

(
χ
(3)
21′21′S2P1′P∗1′ + χ

(3)
11′21′S1P1′P∗1′

)
dP1′

dz
= − g

2η

∑
i,k=1,2

χ
(3)
i1′k1′SiP1′S∗k . (8)
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As the polarisation bases for the pump and the Stokes fields are not required to coincide, primes
were added to the pump basis labels in Eqs. (8) to discern it from the Stokes basis. As shown
below, it is useful to choose a different Stokes basis. We calculate the χ(3) terms as a function of
the pump and Stokes basis angles α and β, respectively, using the tensor for diamond [13]. The
‘direct’ susceptibility components χ(3)11′11′ and χ

(3)
21′21′ , where the pump interacts with S1 and S2

independently, are [17]

χ(α, β) =
∑

i=1,2,3

(
es(β)Riep(α)

) (
es(β)Riep(α)

)∗ (9)

where the angles α and β are with respect to the [110] direction and es and ep are unit vectors
pointing in the directions of Stokes and pump polarisations, respectively. The ‘cross coupling’
terms χ(3)21′11′ and χ

(3)
11′21′ , where the amplification of S1 and S2 depend on each other, are

χcross(α, β) =
∑

i=1,2,3

(
es(β)Riep(α)

) (
es(β + π/2)Riep(α)

)∗
, (10)

Equations (8) simplify when choosing a basis for which the χcross terms are zero (so that the
Stokes field components are independently amplified). Figure 2 shows the calculation of χ and
χcross for all combinations of pump and Stokes bases orientations α and β. It is seen that, for
every pump polarisation, there exists a Stokes basis in which the cross terms vanish (see Fig. 2(b))
and are 90◦ apart. For example, for a pump polarisation angle of α = 90◦, the χcross terms are
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Fig. 2. (a) χ as a function of pump and Stokes polarisation angles. Full black and white
lines show maxima γ1 and minima γ2, respectively. (b) χcross as a function of pump and
Stokes polarisation angles.

zero for the Stokes basis angle β = 0◦. For this choice, the polarisations amplify independently
with gains proportional to maxima and minima values of χ (shown as black and white full lines
in Fig. 2(a)). With such directions chosen as a Stokes basis Eqs. (8) reduce to

dS1
dz
=
gγ1
2

S1P1′P∗1′

dS2
dz
=
gγ2
2

S2P1′P∗1′

dP1′

dz
= − g

2η
(
γ1S1P1′S∗1 + γ2S2P1′S∗2

)
. (11)
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The maxima γ1 and minima γ2 of χ are found by parametrizing Eq. (9) and finding its extremes.
The solutions for γ1 and γ2 are

γ1 = cos2
{

1
2

arctan [2 cot(α)]
}

cos2(α) + sin2
{
α +

1
2

arctan [2 cot(α)]
}

γ2 = cos2
{
π

2
+

1
2

arctan [2 cot(α)]
}

cos2(α) + sin2
{
π

2
+ α +

1
2

arctan [2 cot(α)]
}
, (12)

Eqs. (12) describe the black and white lines in Fig. 2(a). Since the coupling coefficients are
normalised to the value of pump polarisations parallel to [110] direction, γ1 grows from 1 to
4/3 and falls back to 1, and γ2 decreases from 1 through 1/3 to 0 as the pump polarisation is
rotated from 0◦ through 35.3◦ to 90◦, respectively. With these simplifications, the gain matrix G
takes the form of Eq. (2) allowing the solution procedure of Sec. 2. G is a function of only the
combined loss and reflectivity of the mirrors R and the angle of the pump polarisation α, which
in turn defines the Stokes basis and amplification coefficients γ1,2.

4. Model results

The eigenvectors and eigenvalues of the roundtrip matrix M (Eq. (6)) predict the output Stokes
polarisation dependencies. M is a function of the four parameters; the birefringence phase
difference ξ, the angle between the birefringence fast axis and Stokes bases τ, the angle of
the pump polarisation α which defines the coupling parameters γ1 and γ2, and the effective
reflectivity of the mirrors R that determines steady-state gain strength.
The impact of ξ is the strongest when the Stokes bases is 45◦ to birefringence axes and is

zero if they coincide. The effect of Γ increases from zero to ln(R−1/2) as the pump polarisation
direction changes from 0◦ to 90◦. The relative strength of Γ and ξ distinguishes several cases.
When the gain term dominates, (i.e., Γ >> ξ), the cavity eigenvectors are linear polarisations
aligned with the Stokes basis. When birefringence dominates (Γ << ξ), the eigenvectors are
linear polarisations in the directions of the birefringence fast and slow axis and for Γ ≈ ξ the
output polarisations are elliptical. The following sections discuss model results for the three
cases and a case involving the addition of circular birefringence.

Note that for Γ = 0, the solutions are eigenvectors along the birefringence axes directions with
identical eigenvalue and the laser can operate on either of them. If ξ is also zero, the solution
of the roundtrip matrix is the identity for which all eigenvectors are solutions with identical
eigenvalue. Experiments have shown that linear polarisations are produced under such conditions,
but with direction that changed randomly from pulse to pulse [16].

4.1. Output polarisation determined by gain: Case Γ >> ξ

In this case the solutions are linear polarisations along the Stokes basis where output Stokes
is linearly polarised along the direction β of the highest normalised gain component γ1, with
β = 1/2 arctan(2 cot(α)). Figures 3(a)-(d) indicate the polarisation, ellipticity and angle for all
pump polarisation angles and for birefringence phase shift increasing up to 100 mrad. The
gain dominated behaviour is shown in the bottom row in Figs. 3(a)-(d) (the 0◦ pump case was
excluded). For pump polarisation rotated from 0◦ to 90◦ the output polarisation rotates in opposite
direction from 45◦ to 0◦. The pump and output polarisations coincide for 〈111〉 directions, at
35.3◦ and 144.7◦. Such behaviour is typical for pulsed DRLs using relatively low R [16]. Note
that output polarisations beyond 45◦ are not obtained for any pump polarisation.

4.2. Output polarisation determined by linear birefringence: Case Γ << ξ

Under this condition the cavity eigenvectors are linear polarisations aligned with the birefringence
fast and slow axes as shown in top rows of Fig. 3(a)-(d). The gains associated with each axis
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Fig. 3. Output polarisations shown as ellipses as a function of linear pump polarisations
angles and birefringence phase shift. Top axis indicates corresponding Γ. The colours
red/blue indicate left/right handedness. R = 99% and τ = 0◦, 20◦, 45◦, and 70◦ in (a), (b),
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Γ = 3.8 × 10−3, τ = 20◦, and α = 35◦ for a linear and ring cavity, respectively.
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direction, and therefore which polarisation lases, is dependent on the pump polarisation and
fast axis direction. In Fig. 3(a) the output polarisation is always horizontal, in 3(b) and 3(d) the
polarisations flip at 120◦ and 60◦, respectively and in 3(c) the flip occurs at 90◦. There is also a
flip when the pump polarisations cross 0◦/180◦. The switching between polarisations is well
produced in experiments as shown in Sec. 4.5. Vertical output polarisations are not obtained
even for a vertical fast axis, as in the high gain case; however, all other orientations are possible.
The pump polarisation at which the output polarisation flips occurs at the crossing points

where the gain for one axis surpasses the other. Figure 5(a) shows the normalised gain as a
function of pump polarisation angle and birefringence fast axis direction. The region where
the gain is highest for the slow axis direction is highlighted by white stripes. For any pump
polarisation, maximum gain (indicated by dashed black lines) is achieved when birefringence
axes coincide with the Stokes bases.
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Fig. 5. (a) Normalised gain as a function of pump and birefringence fast axis angle τ for
strong birefringence ξ = 15 mrad and low gain R = 99%. Black dashed lines indicate gain
maxima. White stripes indicate the region where the output polarisation is parallel to the
slow birefringence axis. (b) Gain as a function of birefringence fast axis angle for pumping
polarisations parallel to the [110], [111], [001], and

[
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]
. The lines change from full to

dashed for the Stokes polarisation parallel to fast and slow axis, respectively.

Figure 5(b) shows vertical cuts through Fig. 5(a) for pump polarisations aligned to crystal
directions of high symmetry. For any birefringence orientation (except 0◦ and 90◦) the highest
gain is obtained for the pump polarisation parallel to the 〈111〉 axis that is closest to a fast or slow
birefringence axis. The maximum difference in gain, and thus threshold, between the two 〈111〉
directions is 26% for birefringence fast axis oriented at 10◦ and 80◦. At 10◦, for example (as in
Fig. 1), the birefringence axes are 45◦ from

[
1̄1̄1

]
and 25◦ from [111] direction and therefore for[

1̄1̄1
]
pumping the Stokes polarisation direction is pulled the furthest from its original direction

unperturbed by birefringence.

4.3. Output polarisation determined by balance between linear birefringence and gain:
Case Γ ≈ ξ

For approximately balanced gain and birefringence, the output is elliptical as shown in Figs. 3(a)-
(d) as red (left-handed) and blue (right-handed) ellipses. For intermediate values of ξ, the
ellipticity strongly depends on pump polarisation due to the resultant effect on Γ and the angle
between the birefringence and Stokes bases. The output becomes linear when the Stokes high
gain axis coincides with one of the birefringence axes. In that case the output polarisation remains
unchanged for any phase shift value as it does not interact with the birefringence. Thus elliptical
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states are observed in the transition region where Γ ≈ ξ and when the maximum gain direction is
away from the birefringent axes.
As a specific example we consider the situation for a birefringence fast axis at τ = 20◦

(Fig. 3(b)). For pump polarisation close to 0◦, the Stokes is elliptical for ξ between 0.2 mrad
and 4 mrad. As the pump angle is increased, Γ also increases and, correspondingly, elliptical
outputs are obtained only for larger values of ξ. For fixed ξ, the major effect of increasing the
pump polarisation angle is to shift the Stokes basis towards τ. The polarisation is purely linear
for the pump angle of 65◦, for which the Stokes basis coincides with τ. Further increasing the
pump angle ultimately leads again to elliptical output but with opposite handedness and a flip of
the major axis from fast to slow birefringence axis at a pump angle of 120◦.
The transition from low to high birefringence is shown in more detail by plotting ellipticity

as a function of R and the birefringence phase shift. Figure 6 shows ellipticity for two cases:
Fig. 6(a) for pump polarisation close (within 5◦) to the [110] direction for which γ1 ≈ γ2 ≈ 1 and
Fig. 6(b) for pump polarisation aligned with [001] where γ1 = 1 and γ2 = 0. For both plots, the
birefringence fast axis is at 45◦ with respect to high gain axis γ1 (i.e., 0◦ and 45◦, respectively) to
induce the highest ellipticity. Note, however, that the maximum ellipticity never reaches 1. Below
the region of high ellipticity (gain dominated regime) the output polarisation tends to linear along
the Stokes basis high gain axis. Conversely, above the region (birefringence dominated regime),
the polarisation tends to the birefringence axis with higher gain.

The Γ value as a function of R is plotted on Figs. 6(a)-(b) (dashed line), confirming that Γ ≈ ξ
is the condition needed to produce strongly elliptical output. Γ deviates from this condition
for small values of R and large gain difference. For increasing R (decreasing Γ) the phase
shift required to induce ellipticity and ultimately flip the polarisation from the high gain to the
birefringence axis is smaller. The slope of the peak ellipticity line is smaller in Fig. 6(a) than
6(b) due to the smaller gain difference and thus the birefringence dominates for smaller ξ.
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for pump polarisation angles of (a) 5◦ and (b) 90◦. The dashed black line indicates the
magnitude of the gain difference Γ (also shown as the top axis) as a function of R on the ξ
axis. The insets show magnified regions for typical values observed in diamond and used in
cw DRLs.

The insets of Fig. 6(a) and 6(b) show the ellipticity for typical values used in cw DRLs.
The reflectivities range from 99.5% to about 90% depending on pump power [18, 19] and
birefringences at 1 µm wavelength are about 0.05 rad (but can be as high as 0.5 rad) for
materials typically used in lasers [3]. These results indicate that elliptical output is predicted
for experimental parameters of R = 99% and ξ = 5 mrad, for example, when using a pump
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polarisation of 90◦.

4.4. Optical rotation

Some CVD-grown single crystal diamonds show evidence of optical rotation as a result of
the compound effect of crystal stress induced birefringence with varying orientation in the
propagation direction [3]. Such an element, represented as a sequence of randomly oriented
wave-plates, is equivalent to a single wave-plate and a rotator [20]. However, since the rotator
matrix is non-commutative with the gain and birefringence matrices, a single matrix describing
all effects is required to enable calculation of the cavity eigenmodes. Such a matrix can be
obtained, following the derivation in [21], by dividing the medium into thin layers of separate
birefringence, gain and optical rotation effects. Since the change induced in each layer is small,
the exponential functions in gain and birefringence matrices and trigonometric functions in the
rotation matrix can be replaced by low order Taylor expansions. Such matrices commute and, in
the limit of zero thickness, combine into the overarching matrix J as

J = ©­«
cos T

2 −
iξ cos(2τ)−Γ

T sin T
2

Θ−iξ sin(2τ)
T sin T

2

−Θ+iξ sin(2τ)
T sin T

2 cos T
2 +

iξ cos(2τ)−Γ
T sin T

2

ª®¬ , (13)

where Θ/2 = θ is the circular birefringence with induced optical rotation θ, T =
√
ξ2 + Θ2 + Γ2

and dichroism terms were neglected for simplicity. Setting Θ = 0 in J retrieves the result from
Eq. (6) for small birefringence and gain as required.
In a standing wave resonator, the rotation angle in matrix J changes sign on the second

pass. However, because the gain, linear birefringence, and optical rotation act upon the field
simultaneously, the rotation is not completely cancelled per round trip. The outcome is that any
Stokes polarisation is rotated exactly by half of the optical rotation angle, as shown in Fig. 4(a)
for the example parameters of 35◦ and 20◦ for the pump and the birefringence fast axis angles,
respectively.
In contrast, in a ring resonator, the rotation accumulates for each round-trip and thus even a

small amount of rotation results in an elliptical output polarisation. Referring to Fig. 4(b), for
Γ >> ξ (bottom rows), the polarisation is highly elliptical even for small optical rotation angles
and with its major axis rotating towards 90◦. For Γ << ξ (top rows), the ellipticity is induced only
for much larger rotation values and the major axis remains oriented along the birefringence axis.
These results indicate that the ellipticity of output for ring resonators will be highly susceptible
to circular birefringence. For such conditions the normalised gain changes from 1 to 0.5 as the
pump polarisation angle changes from horizontal to vertical. The output polarisation handedness
depends on the direction of optical rotation and also the strength and orientation of the linear
birefringence. The normalised gain of the rotated polarisations in a linear resonator follows
identical rules to Fig. 5(a).

4.5. Experimental comparison ( Γ >> ξ, Γ << ξ)

We verify the validity of the model against the polarisation measurements of a DRL similar to
that reported in [16] but operated close to threshold (case Γ >> ξ) and the DRL in [3] (case
Γ << ξ). Measured and modelled polarisation angles are shown in Fig. 7 for (i) Γ >> ξ and for
Γ << ξ for three birefringence axis directions ((ii),(iii), and (iv)). The modelled polarisations
closely match the measurements, except for one point in (iii), where the experiment switches
direction later then predicted, most likely due to inaccurate determination of the birefringence
axis direction or magnitude of optical rotation.
The role of birefringence magnitude and direction is analysed in more detail by plotting the

observed output polarisations on the gain map of Fig. 5 as displayed in Fig. 8. For (i) the Stokes
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output is polarised along the high-gain directions as expected. The measurements closely follow
the maximum of the gain γ1 even for pump angles approaching 0◦ where a transition to unstable
or random polarisation directions is expected. The absence of such behaviour may have been
caused by a coincidence of the particular orientation of the birefringence axis close to 45◦.
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Fig. 7. Measured Stokes polarisation angles (full thick lines) compared to modelled Stokes
polarisations (dashed). (i) this work, R = 0.3, ξ = 0.3 rad, τ unknown; (ii), (iii), (iv) from [3],
R = 0.99 (R used was 99.5% plus 0.5% additional roundtrip loss), ξ = 0.06 rad, 0.2 rad,
0.27 rad, τ = 45◦, 71◦, 1.7◦, and θ = 1.25◦, 9.15◦, 6.6◦, respectively, measured by Mueller
polarimetry.
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Fig. 8. Stokes output polarisation angle as a function of pump polarisation angle. Dashed
lines show fast f and slow s axis of the linear birefringence determined byMueller polarimetry.
Blue circles and full line show measured and modelled Stokes polarisation angles for given
pump polarisation angles for Γ >> ξ. The triangle, square and diamond symbols show
measurements (ii), (iii), (iv) corresponding to spots A, C, D in [3] respectively and show the
opposite case of Γ << ξ for varying values of birefringence and its orientation. Full lines of
the same colour are corresponding modelled results and dashed lines indicate the orientation
of the linear birefringence.

In the birefringence dominated regime the model correctly predicts the starkly contrasting
behaviour in which the polarisation remains aligned to the birefringent axis (dashed lines) and
flips at points for which the gain is surpassed by that of the other birefringence axis. The offset
from the fast and slow axes caused by the presence of small amount of optical rotation is also
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correctly predicted. The small discrepancies between the modelled and measured polarisations
(< 3◦) are attributed to errors in measuring the value of circular birefringence and fast axis
orientation.

Since all polarisation measurements reported to date have corresponded to the extreme cases
producing linearly polarised output, our work predicts conditions that are expected to yield
elliptical output. It is noted that the region of high ellipticity places tight constrains on the exact
values of R and ξ as shown in Fig. 6.

5. Conclusion

We have used a Jones formalism to calculate polarisation modes in lasers containing non-collinear
anisotropic gain and birefringent axes, a scenario that occurs in diamond Raman lasers. The model
describes 3 main regimes: A gain dominated regime in which linear output polarisations are
observed along the high gain axis. A birefringence dominant regime in which linear polarisations
are produced in directions along the fast and slow axis depending upon which is more closely
aligned to the high gain axis. And a transition region producing elliptical outputs when the
effects of gain and birefringence are in near balance. The model also considers the role of optical
rotation in the gain medium, which is found to occur in some diamond samples. In standing
wave resonators the rotation causes an angular offset in the polarisation behaviour; however, for
unidirectional ring lasers, even small amounts of optical rotation lead to elliptical output.

The theory also applies to other anisotropic systems such as silicon Raman lasers (which share
crystal class with diamond) and potentially inversion lasers that have a combination of strongly
anisotropic gain and birefringence. Extension to other systems is straightforward provided the
gain has an orthogonal basis where the polarisation components amplify independently.
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